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ABSTRACT

Safe reinforcement learning is important for the safety
critical applications especially network security, as the explo-
ration of some dangerous actions can result in huge short-term
losses such as network failure or large scale privacy leakage.
In this paper, we propose a reinforcement learning algorithm
with safe exploration and uses transfer learning to reduce the
initial random exploration. A blacklist is maintained to record
the most dangerous state-action pairs as a safety constraint. A
safe deep reinforcement learning version uses a convolutional
neural network to estimate the risk levels and thus further im-
proves the safety of the exploration and accelerates the learn-
ing speed for the learning agent. As a case study, the pro-
posed reinforcement learning with safe exploration is applied
in the anti-jamming robot communications. Experimental re-
sults show that the proposed algorithms can improve the jam-
ming resistance of the robot and reduce the outage rate to en-
ter the most dangerous states compared with the benchmark
algorithms.

Index Terms— reinforcement learning, safe exploration,
deep reinforcement learning, network security

1. INTRODUCTION

Reinforcement learning (RL) techniques such as Q-learning
and deep Q-network (DQN) enable a learning agent to make
decision via trial-and-error in network security applications,
such as the anti-jamming communication [1] and malware de-
tections [2]. However, most classical reinforcement learning
techniques explore all the state-action pairs including those
that will cause immediate network failure or huge user pri-
vacy leakage to estimate the expected reward of the policy es-
pecially at the initial learning. The learning speed of such re-
inforcement learning algorithms is often slower than the net-
work dynamics in network security applications due to the
difficulty accurately estimating the reward and the state espe-
cially under unknown attack policies.

Safe exploration has become an critical issue for rein-
forcement learning especially in the safety critical applica-
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tions [3]. For instance, the seminal work in [3] uses a Gaus-
sian process to model the safety constraints and only explores
the safe state-action pairs following the safety constraints ac-
cording to the knowledge of a safety function with Lipschitz
continuity. Berkenkamp et al. further propose a safe model
based reinforcement learning algorithm with Lyapunov sta-
bility and applies it in a simulated inverted pendulum system
with known statical models of the dynamics [4].

Transfer learning (TL) can initialize the learning model
by exploiting the knowledge gained from solving the previous
similar tasks to accelerate learning. For example, Laroche et
al. propose a transfer reinforcement learning with shared dy-
namics, in which the transition samples are cast in the target
environment with a reshaped reward based on upper confi-
dence bound [5]. In particular, the case-based reinforcement
learning (CARL) as proposed in [6] uses the case-based rea-
soning as an instance-based state approximator for RL.

In this paper, we propose a Reinforcement Learning al-
gorithm with Safe Exploration (RLSE) to enable a learning
agent such as a smartphone or robot to choose the security
policies. This algorithm evaluates the risk level of each state-
action pairs, which can be the security performance metrics
such as the probability of privacy leakage or network failure
during the learning process. The action is chosen based on
a modified Boltzmann distribution according to the Q-values
and the risk levels to ensure safe exploration. Transfer learn-
ing is applied to initialize the learning parameters to reduce
the initial explorations. A Deep Reinforcement Learning al-
gorithm with Safe Exploration (DRLSE) is also designed to
further accelerate the learning speed and reduce the outage
probability, i. e., the rate for the learning agent to stay in the
most risky states during the exploration. This algorithm uses a
convolutional neural network (CNN) to estimate the Q-values
and the risk levels of the actions under the current state.

As a case study, the proposed algorithms are applied in
the anti-jamming communication, a typical wireless security
scenario. Specifically, a robot chooses the communication
policy including the transmit power and the moving direction
to send the sensing data to a remote controller to resist the
jammers that send faked signals to degrade/interrupt the on-
going communications. Experimental results verify the per-
formance gain of the safe exploration regarding the jamming
resistance of the robot and the outage probability.
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2. RELATED WORK

Safe exploration of the Markov decision process (MDP) in [7]
formulates the safety of a MDP based on its ergodicity and
ensures the reachability of the initial states. The safe explo-
ration as presented in [8] uses relative reachability between
the states to measure and avoid side effects such as the disrup-
tion to the environments. [3] defines the exploration safety as
an a priori unknown safety constraint of the state-action pair
with a Gaussian process. [9] combines offline formal verifi-
cation and runtime monitoring to improve the safety of rein-
forcement learning in adaptive cruise control. The learning-
based control system proposed in [10] uses the Gaussian pro-
cesses to approximate the error between the commanded ac-
celeration and the actual acceleration of the system to ensure
stability of the closed loop system and high-accuracy tracking
of smooth trajectories.

Anti-jamming transmission is one of the first network
security applications that use reinforcement learning tech-
niques. For instance, the wireless communication system in
[1] uses Q-learning to choose the frequency channel to resist
jamming. The anti-jamming vehicular transmission system
in [11] uses the policy hill climbing algorithm to optimize the
relay policy of the unmanned aerial vehicles against jamming
and interference. The anti-jamming communication system
in [12] applies DQN to determine the communication policy
without knowing the jamming and the channel model. How-
ever, the communication performance of these schemes is not
good enough to be implemented in practical networks.

3. REINFORCEMENT LEARNING WITH SAFE
EXPLORATION

We propose a safe reinforcement learning algorithm with safe
exploration for safety critical applications. This algorithm
evaluates the risk level of each state-action pair according to
the security performance metrics and adjust the action selec-
tion policy based on the risk levels. We focus on the safe
exploration of the discrete-time, finite-state and finite-action
MDP, in which the next state only depends on the current state
and action. Let k£ denote the time index that can be omitted
if no confusion happen in the following content. The MDP is
denoted by a tuple M = (S, A, P, R), where

e S is a set of the possible states.
e A is a set of the feasible actions.

e P:SxA xS — [0,1] represents the transition proba-
bilities to another state by taking action ay, at sy.

e R :S x A — Ris the reward function as performance
metric of the agent that takes action ay, in state sy.

A policy denoted by m : S x A — [0, 1] represents the
probability of taking action ayj in state s;. The goal of the

learning agent is to optimize its policy that maximises its
long term expected rewards that can be estimated with the
Q-value. In the classical Q-learning algorithm, the Q-values
are updated via the Bellman iterative equation according to
the reward 7, and its state transition given by:

Q (s, ar) (1 — a)Q (s, ar)

+a (m + Vglng (8k+1, a)) , ey

in which o € [0, 1] is the learning rate weighs the current
experience in the learning process and v € (0, 1] denote the
discount factor that represents the weight of the future reward.

Let I(sg, ax) denote the risk level of taking action ay in
the state sg. For simplicity, this algorithm assumes L risk
levels, where risk level L is the most dangerous and the state-
action pair is safe with zero risk level. The learning agent
updates a blacklist denoted by T = { (s, ax)|l(sk,ar) = L}
to store the most dangerous state-action pairs.

Let &; denote the criterion to measure the risk level ¢, the
learning agent uses a criterion vector £ = [§¢]1§¢§ 1, accord-
ing to prior knowledge to identify whether a new explored
state-action pair is safe or not. Note that there exists different
methods to evaluate the risk levels for the agent. For simplic-
ity, we use a predetermined criterion vector but our algorithm
can be extended to other methods. Let I(-) denote an indicator
that equals to O if the argument is true and 1 otherwise. The
risk level (s, ai ) depends on the reward 7 and the criterion
vector € given by [(sg, ar) = Zf:o I(rp > &).

In the MDP, taking an inapproriate action ay, in state sy is
likely to bring the agent into a sequence of risky state-action
pairs although {(sg, ax) is low. Therefore, the learning agent
traces back the previous experienced state-action pairs to esti-
mate the long-term risk levels of their previous decision. We
use the discount factor v to represent the degradation of in-
fluence of current decision to future rewards. The algorithm
considers the long-term risk level denoted by F(s,a) for A
steps given by

A
E (siyar) = > ¥ skt aheg)- @)

J=0

The action selection policy 7 (s, a), i.e., the probability
to select action a € A in state sg, is determined according
to the risk level and Q-value of each state-action pair via a
modified Boltzmann distribution [13] given by

exp (M) 1(U(sk,a) = L)

Q(sk.a) -
G%A exp (E(Skf‘a,>+1) I(i(sk,a’) = L)

3

7 (sk,a) =

The denominator E(s, a) in the exponent works as a temper-
ature parameter that adjusts the randomness of the decisions.
The action with higher Q-value and lower risk level will be
selected with a higher probability and the action in the black-
list will be forbidden.
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This algorithm uses transfer learning and exploits the
prior network defense knowledge to initialize the Q-values
and the risk levels. Let (§;, a;, §;4+1, 7;) denote a transition in
a similar network environment that shares a similar dynamics
and reward function to current network security application.
The learning agent samples 7 transition randomly from a
transition set Q = {(§;, G, $i+1,7:) }1<i<n to update the Q-
values and the risk levels via Eq. (1) and Eq. (2), respectively.

4. DEEP REINFORCEMENT LEARNING WITH
SAFE EXPLORATION

We further propose a deep reinforcement learning algorithm
with safe exploration named DRLSE. This algorithm uses a
CNN like the DQN algorithm to estimate the Q-value of each
action [14] and introduces another CNN named E-network to
estimate the long-term risk levels of each state-action pair.
Current state s is input with the previous W state-action
pairs to the Q-network to estimate Q (s, a) and the E-network
to estimate E(sy,a), Ya € A. The action ay, is then chosen
according to the Eq. (3).

Similar to the RLSE algorithm, the agent evaluates the re-
ward 7, observes the next state si4; and evaluates the risk
level of (sg,ay) based on the criterion vectior. This transi-
tion ey, = (Sk, Ak, Tk, Sk+1,1(Sk, ax)) is stored in a memory
pool D. This algorithm uses the experience replay technique
to update the CNN with a minibatch B sampled from D based
on the stochastic gradient descent (SGD) algorithm. The Q-
network weights 8¢ are updated by minimizing the loss func-
tion given by

L(0q) = Ec,en

2
(7 max Qsesn.0) = Qo)) } @

Meanwhile, the E-network weights O are updated by min-
imising the loss function between the estimate risk level and
the target risk level given by

A 2
L(Op) = Ec,cn [(Z’le(SiJrjaaiJrj) E(Si’ai)> ] NE))
=0

Moreover, the Q-network and E-network can share the
convolutional (Conv) layers to reduce computation as both
the Conv layers of the two CNNs work as a feature extractor.
The architecture of the designed network is illustrated in Fig.
1 as an example.

Transfer learning is also applied to initialize the CNN
weights 8o and 8g. More specifically, the loss functions
L(0g) and L(Of) are calculated via Eq. (4) and Eq. (4),
respectively, based on a minibatch B sampled from 2. The
learning agent then updates the weights of the network based
on the gradients of the loss functions.
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Fig. 1. Illustration of DRLSE.

5. CASE STUDY: SAFE EXPLORATION IN THE
ANTI-JAMMING ROBOT COMMUNICATION

As a concrete example, we implement the reinforcement
learning with safe exploration in the robot communication
system to resist jamming attacks. The robot chooses the
transmit power and the mobility policy to send messages
such as the sensed images to the remote controller. By using
smart radio devices, a jammer can sense the radio channel
state and chooses its jamming power to degrade the ongoing
communication performance.

In the reinforcement learning algorithm with safe ex-
ploration, the robot observes its current location vector
denoted by LOC), estimates the bit error rate of the last
message based on the feedback information from the re-
mote controller BER),_1, and formulates the current state
as sy = [LOCy, BERg_1]. The robot determines its mov-
ing direction v, € {0;1;2;3;4}, which corresponding to
staying in the previous location, and moving north, south,
west and east, respectively. The robot moves according to
vy, and sends a message with transmit power py € [0, Pyaz)
mW. The action vector a; = [y, px| is chosen following the
policy m(als) that is given by Eq. (3) based on the Q-values
Q(sg,a) and the risk levels E(sy,a).

Upon receiving the feedback of this message transmis-
sion from the remote controller, the robot evaluates the im-
mediate reward bases on the BER of the signal and the trans-
mission cost with r, = —BERy, — Copr, — C11 (v, = 0),
where Cy and C; are the weights of the robot transmission
and movement cost, respectively. We mainly concern about
BER as a security issue in the anti-jamming communication,
thus the robot compares the BER with a criterion vector £ =
{0.1,0.05,0.03,0.01} to evaluate the risk level (s, ag).

The BER larger than 0.1 will cause communication out-
age and the corresponding state-action pair is regarded as
most dangerous and recorded in the blacklist 7. The robot
updates the risk levels of the previous 5 state-action pairs via
Eq. (2), with v = 0.5.

The robot that supports deep learning can apply the
DRLSE algorithm to further improve the jamming resis-
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Fig. 2. Illustration of the moving path and the transmit power.

tance. Current state s is the input to the CNN to estimate
the Q-values Q(sy,a) over the Q-network and the risk lev-
els E(sy,a) over the E-network, Ya € A. We use a net-
work with two one-dimension convolutional layers and two
full-connected layers for each branch. The activation func-
tion is the Rectified Linear Units (ReLUs). The robot’s
anti-jamming communication experience at time step k,
ex = (Sg,ak,Tk,Sk+1,0(Sk,a)) is stored in the memory
pool D. At each time step, the robot randomly samples 32 ex-
periences from the memory pool to formulate the minibatch
B. The loss functions of the Q-values and the risk levels are
calculated according to B via Eq. (4) and (5), respectively.
The weights of the Q-network and E-network, i. e., 8o and
0r, are updated via SGD based on the loss functions.

We record a transition set €2 from a similar communica-
tion scenario with different topology, in which another robot
chooses its action randomly. At the beginning of the learning
process, the robot applies the transfer learning to initialize
both the two algorithms based on €2 with n = 200.

6. PERFORMANCE EVALUATION

We evaluate the performance of the proposed RL based robot
communication scheme via the toy experiments in a 30 x20
m? room against three jammers. Each jammer stayed in the
same location and sent signals at 20 mW power as shown in
Fig. 2(a). The robot initially stayed at (18,10) m and chose
a direction to move 1 m at each time step to send the sensing
report with power 50, 100 or 150 mW.

The moving path and the transmit power of the robot that
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Fig. 3. Performance of the robot communication system.

applies the proposed safe exploration algorithms over the first
400 time steps are illustrated in Fig. 2. The result is compared
with the classical Q-learning, DQN and CARL that uses the
case-based reasoning to reduce random exploration [6]. The
proposed RLSE enables the robot to find the “good” transmit
location that saves the transmit power and is less impacted
by the jammers faster than CARL that is in turn better than
Q-learning. Compared with RLSE and DQN, the safe explo-
ration with deep RL, DRLSE further saves the exploration
and provides stronger jamming resistance with higher trans-
mit power over the long-distance communication.

The BER of the received message, the energy consump-
tion of the robot, the outage probability that is the rate for the
robot enters the most risky states and the reward of the robot
over time averaged over 200 experiments are provided in Fig.
3. The proposed RLSE algorithm reduces the error rate of
the message transmission, energy consumption and the out-
age probability, and increases the reward compared with Q-
learning and CARL. The DRLSE algorithm provides the best
anti-jamming communication performance for the robot that
supports CNN due to the safe exploration.

7. CONCLUSION

In this paper, we have proposed a safe reinforcement learn-
ing algorithm with safe exploration and the deep reinforce-
ment learning version for safety critical applications. This
approach enables a learning agent to learn the risk levels of
the state-action pairs via trial-and-error and reduce random
explorations. A case study was performed for the robot com-
munication against three jammers. Experiment results verify
its performance gain including the communication quality, the
outage probability and the reward compared with the bench-
mark algorithms.
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