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ABSTRACT

In this paper, we address the problem of bird audio detec-

tion and propose a new convolutional neural network archi-

tecture together with a divergence based information channel

weighing strategy in order to achieve improved state-of-the-

art performance and faster convergence. The effectiveness of

the methodology is shown on the Bird Audio Detection Chal-

lenge 2018 (Detection and Classification of Acoustic Scenes

and Events Challenge, Task 3) development data set.

Index Terms— Deep convolutional neural networks, bird

audio detection, KL divergence, bulbul, layer weighting, layer

initialisation

1. INTRODUCTION

The task of bird audio detection (BAD) is concerned with the

labelling of an input sound recording for the presence or ab-

sence of a bird sound. A solution to the detection problem is

expected to be useful to systems targeting wildlife monitor-

ing, which measure the density of birds, analyse bird migra-

tions, carry out species classification, etc. The research in this

application domain is encouraged and supported by the BAD

Challenge [1, 2], which provides a collection of diverse data

sets every year to promote the development of classification

methods including Deep Neural Networks (DNNs).

In this study, we initially introduce a new DNN architec-

ture addressing the BAD problem, named BirdNet, by extend-

ing the state-of-the-art system, bulbul [3], that has won the

BAD Challenge 2017 [1]. The learning of the network pa-

rameters is controlled by a novel weighting strategy for the

information channels of the proposed architecture. We show

that this innovation leads to a faster convergence of the net-

work. The weighing methodology is based on a measure of
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information divergence between the positive and negative pat-

tern distributions observable at different convolutional layer

channels. We name this version of the BirdNet, aided by con-

textual channel weights, BirdNet-D.

Using multiple random splits by maintaining 80% / 20%

training / test ratio on the development data set of BAD Chal-

lenge 2018, BirdNet is demonstrated to outperform the bulbul

system by 6.55%. Furthermore, by employing BirdNet-D, we

show that it is possible to obtain a better accuracy than that

of BirdNet in every epoch and converge to optimum perfor-

mance much earlier. Moreover, it is also possible to achieve a

slight improvement in the performance.

This paper is organised as follows. In Section 2, we

present the background information to the BAD problem.

Section 3 provides details of the proposed methodology. Sec-

tion 4 discusses the experimental validation of the proposed

method. The conclusions are drawn in Section 5.

2. RELATION TO PRIOR WORK

In this section, a short review of the prior art related to the

topics this study is presented, with a focus on BAD method-

ologies and weight initialisations for DNN layers.

2.1. BAD Approaches

Early research in BAD explored techniques such as Gaussian

mixture models (GMMs), hidden Markov models (HMMs)

and random forests [4, 5, 6, 7, 1] while using mel spectrum or

mel frequency coefficients as features. More recently, DNN

approaches, such as convolutional neural networks (CNNs),

have been introduced for solving audio tagging problems in-

cluding BAD [8]. Among these, the winner system of the

BAD 2017 Challenge, bulbul [3], is an example.

Note that the BAD problem falls into the weakly-labelled

data learning category, as the only annotation available is a

label indicating the presence or the absence of a bird in a
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recording, without the specification of the exact time of the

bird sound occurrence. In our work, we use an extended ver-

sion of the bulbul system architecture, augmented by further

convolutional and pooling layers for better performance, and

incorporating a weighting layer for faster convergence.

2.2. Weighting of CNN layers

Various methodologies for the initialisation of convolution

and fully connected layer weights of CNNs [9, 10] are de-

scribed in the literature. The aim of most of these weight-

ing approaches is to obtain similar gradient scales across all

layers. Recently in [11], by adopting a different point of

view, a contextual information based scaling was proposed

for addressing the problem of image retrieval under triplet

loss. Specifically, the outputs of the convolution layers were

weighted in a separate multiplication layer. Based on infor-

mation theory, the proposed weighing gauges the importance

of each convolved sub-region of the input image. For this pur-

pose, Kullback-Leibler divergence (KL divergence) [12] was

employed.

Although KL divergence is commonly used in the liter-

ature, the problems that limit its use cases are reported in

[13, 14]. In this paper, we adopt a symmetric version of the

KL divergence, overcoming some of its shortcomings, and ap-

ply the divergence based channel weighting strategy to a new

network for audio data classification, using logistic regression

on the deep features extracted.

3. METHODOLOGY

This section provides the details of the BirdNet and BirdNet-

D systems, the features they take as input, and the proposed

weighting strategy.

3.1. Feature Extraction

Each audio clip in the BAD Challenge data set consists of a

10 second single-channel recording sampled at the 44.1 kHz

sampling rate, nonequantised to 16-bit resolution and stored

as a PCM file. The features of these clips are extracted in

a similar manner as in the bulbul system [3]: The input sig-

nals are downsampled to 22.05 kHz and short-term Fourier

transform spectra are calculated with a window size of 1024

samples and hop size of 220 samples. From the spectra, log-

mel frequency coefficients are computed using a filter bank of

80 triangular mel filters. The coefficients are normalised by

subtracting the mean and dividing by the standard deviation

per frequency band. The size of the resulting feature matrix

for an input clip is therefore 80x1000, where the dimensions

represent frequency and time, respectively.

Input 80 x 1000 x 1 Input 80 x 1000 x 1

Conv (5x5) 80 x 1000 x 32 Conv (5x5) 80 x 1000 x 32

Pool (2x2) 40 x 500 x 32 Pool (2x2) 40 x 500 x 32

Conv (3x3) 40 x 500 x 64 Conv (3x3) 40 x 500 x 64

Pool (2x2) 20 x 250 x 64 Pool (2x2) 20 x 250 x 64

Conv (3x3) 20 x 250 x 128 Conv (3x3) 20 x 250 x 128

Pool (2x2) 10 x 125 x 128 Pool (2x2) 10 x 125 x 128

Conv (3x3) 10 x 125 x 128 Conv (3x3) 10 x 125 x 128

Pool t (1x2) 10 x 62 x 128 Pool t (1x2) 10 x 62 x 128

Conv t (1x3) 10 x 62 x 128 Conv t (1x3) 10 x 62 x 128

Pool t (1x3) 10 x 20 x 128 Pool t (1x3) 10 x 20 x 128

Conv t (1x3) 10 x 20 x 128 Conv t (1x3) 10 x 20 x 128

Pool t (1x2) 10 x 10 x 128 Pool t (1x2) 10 x 10 x 128

Conv t (1x3) 10 x 10 x 128 Conv t (1x3) 10 x 10 x 128

Pool t (1x10) 10 x 1 x 128 Pool t (1x10) 10 x 1 x 128

Weight f 10 x 1 x 128

Pool f (10x1) 1 x 1 x 128 Pool f (10x1) 1 x 1 x 128

Dropout (0.5) Dropout(0.5)

Fully connected 256 Fully connected 256

Dropout (0.5) Dropout (0.5)

Fully connected 64 Fully connected 64

Dropout (0.5) Dropout (0.5)

Fully connected 1 Fully connected 1

(a) (b)

Table 1. Deep neural network architectures of BirdNet (a)

and BirdNet-D (b)

3.2. Network Architecture

The initial DNN architecture we propose for addressing the

BAD task, namely BirdNet, is presented in Table 1-a. This

network consists of seven convolutional and three fully con-

nected layers. Each of these layers is followed by rectified

linear unit (ReLU) nonlinearity.

The first three convolutional layers act on both the time

and the frequency domains and result in 10x125 frequency-

time feature maps. After this point, the network preserves the

number of channels in frequency and only summarises time

by applying a set of rectangular convolutional and pooling

layers on the time axis. These operations lead to the represen-

tation of 10x10 frequency-time feature maps. The network

then summarises the time component by applying a max-pool

of filter size 1x10, leaving 10 convolved frequency channels.

The rest of the network network has two fully connected lay-

ers, each one being associated with a dropout layer using a ra-

tio of 0.5. At the output node, there is a logistic neuron giving

the probability of the presence of a bird in the 10 second-long

audio clip.

The second architecture, which aims to achieve faster con-

vergence than BirdNet, named BirdNet-D, is depicted in Ta-

ble 1-b. The main rationale behind this system is that differ-

ent frequency bands or their convolved representations would

be of different importance to the task of bird audio detec-
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tion; therefore, it would be beneficial to learn the weights

that can act on each output channel to underline their con-

tributions to the prediction. For this purpose, we introduce a

new layer which assigns a weight for each of the convolved

frequency channel across all feature maps (128 feature maps

in our setup), and name it Weight f. Note that the remaining

layers of the BirdNet-D are the same as those of BirdNet (two

fully connected layers with dropout), followed by logistic re-

gression for classification.

3.3. Weight Initialisation

In order to initialise the Weight f layer, BirdNet-D requires

an initial run of BirdNet on a small portion of the training

data. In our experiments, this portion is selected to be equal

to a random 1/5 portion of the original training set. After the

convergence of BirdNet using the subset, the output of the

Pool f layer (see Table 1-a for details) is recorded for further

analysis. Specifically, this layer generates a matrix of size

10x1x128 for each training pattern, where 10 is the number of

convolved frequency bands, and 128 is the number of feature

maps.

For each one of the 10 frequency channels, Principle

Component Analysis (PCA) is applied for reducing the di-

mensionality of the associated feature maps from 128 to 4.

This is so as to extract the highest energy components while

keeping the analysis tractable. The distributions of the posi-

tive and negative training samples in the 4D feature space for

positive are estimated, and the class separability is measured

using information divergence.

A common information measure to gauge the similarity

of two distributions is the Kullback-Leibler (KL) divergence

[12]. If the distributions are identical, or similar, the measure

will tend to zero. A high value of the measure would indicate

differences and therefore high discrepancy. Let P(x) and Q(x)

denote the probability distributions of the input data, x, in the

positive and the negative classes. By considering one of the

distributions as a reference, the KL divergence between P and

Q can be measured as

DKL (P||Q) =
∑

x

P(x) log

(

P(x)

Q(x)

)

. (1)

It can be observed from Equation 1 that KL divergence is

not symmetric, i.e DKL (P||Q) , DKL (Q||L): The value of the

divergence changes depending on the choice of the reference

distribution. In order to avoid this problem, we make use of

the symmetric KL measure (KLS), which is formulated as

DKLS (P||Q) = DKL (P||Q) + DKL (Q||P) . (2)

The KLS values computed for each frequency channel are

passed onto BirdNet-D as the starting points of the Weight f

layer: A high KLS value would mean a high separability be-

tween the positive and negative classes, and the weighting

layer would promote the associated frequency band accord-

ingly. Note that we allow the network to learn and fine-tune

these weights during training.

4. EXPERIMENTS

In this section, after introducing the data sets used for the ex-

perimental analysis, the experimental setup is described and

the results obtained are presented.

4.1. Data set

In this study, we use the three development data sets provided

by BAD Challenge 2018, which are composed of 10 second-

long WAV files totalling 100 hours. The audio clips collected

from three diverse sources are categorised as: 1) Field record-

ings around the world, gathered by the FreeSound project 2)

Smartphone audio recordings crowd-sourced by users of the

bird recognition app, Walblr 3) Remote monitoring record-

ings collected near Ithaca, NY, USA by the BirdVox project.

In our experiments, we carry out 3 random splits of the union

of these data sets with 80% / 20% training / test ratio for the

performance analysis.

4.2. Setup

In addition to bulbul, BirdNet and BirdNet-D architectures,

two more variants of the proposed network have been imple-

mented in order to assess the impact of using KLS for as-

signing the frequency channel weights. For this, the Weight f

layer is re-initialised using: 1) KL divergence 2) Uniform

random distribution in the interval [0,1] scaled by a factor of

2/
√

nc, where nc is the number of frequency channels.

All convolution and fully connected layers of the net-

works are initialised by Xavier initialisation using 3 indepen-

dent runs, each time having a different random seed. During

training, the learning rate is made to decrease with a con-

stant factor starting from 10−3 at the first epoch and ending

with 10−6 at epoch number 25. Note that all networks have

been observed to have converged to their optima by the time

training reaches 25 epochs. Therefore, the results will be

presented for the first 25 epochs only, for brevity.

4.3. Results

The aim of the first set of experiments is to compare the bulbul

and BirdNet architectures using 9 independent runs (3 data

splits x 3 Xavier initialisations). The mean error rates ob-

tained by both networks for 25 epochs are presented in Figure

1, from which it can be observed that after the third epoch

BirdNet outperforms bulbul, converging to an error rate of

11.04% at 25 epochs, while this rate is equal to 17.59% for

bulbul.

Secondly, in Figure 2, we compare BirdNet, BirdNet-D,

and the two variants based on using KL divergence and scaled
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Fig. 1. Performance comparison of bulbul and BirdNet archi-

tectures

random weights during the initialisation of the Weight f layer.

The variants are named “BirdNet-D with KL” and “BirdNet-

D with rand”, respectively. Figure 2 shows that the best over-

all result in terms of performance per epoch are obtained by

BirdNet-D after the second epoch. In other words, BirdNet-

D achieves the fastest overall convergence. Although the KL

variant of the system follows closely, it fails to converge to the

minimum exhibited by BirdNet-D. The minimum error rates

obtained by all systems including bulbul, and their associated

epoch indices are given in Table 2. From Table 2, it can also

be seen that the best error rate achieved by BirdNet-D is also

better than those of the other systems.

It should be underlined that having a weighting layer for

the frequency channels always generates improved results,

compared to those of the original system, BirdNet, which

does not include the weighting layer in its architecture. This

can be visualised by comparing BirdNet against BirdNet-D

with random scaled weight initialisations, latter of which re-

veals higher accuracy for all epochs.

Finally, note that the standard deviations of the errors

achieved by the bulbul, BirdNet and BirdNet-D systems at

their best are 0.775, 0.538 and 0.388 respectively, showing

the superiority of the BirdNet-D in terms of stability as well.

5. CONCLUSIONS

In this paper, we proposed a new deep convolutional neu-

ral network architecture to address the problem of bird au-

dio detection (BAD). Using the development data set of BAD

Challenge 2018 (as part of the Detection and Classification

of Acoustic Scenes and Events Challenge), the proposed net-

work, BirdNet, has been shown to achieve better than the

state-of-the-art detection performance by 6.55%.

Secondly, we have introduced a weighting layer for the

convolved frequency information outputs of the BirdNet sys-

tem. The motivation behind the weighing approach was to

Fig. 2. Performance comparison of the architectures BirdNet,

BirdNet-D, and the two variations, BirdNet-D with KL and

BirdNet-D with rand.

System Min Error (%) Best Epoch Index

bulbul 17.59 25

BirdNet 11.04 25

BirdNet-D 10.78 19

BirdNet-D with KL 11.46 19

BirdNet-D with rand 10.94 25

Table 2. Minimum error rates (%) and the corresponding

epoch indices obtained for all systems

identify frequency components that are more informative for

the task of BAD, and use this information to control the train-

ing of the detection system. To achieve this goal, we used

a divergence based criteria to measure the class separability

afforded by each frequency channel and weight its contribu-

tion to the final decision. We experimented with the classical

Kullback-Leibler divergence and showed that its symmetric

version produces better results. The resulting network has

been named BirdNet-D, and is shown to exhibit much faster

convergence and better accuracy compared to the rest of the

networks, including BirdNet.

This study shows the effect of an informed network de-

sign on the final performance and the convergence rate of the

detection system. For application fields where computation-

ally expensive training in terms of time and resources is un-

avoidable, the proposed design technique offers a favourable

alternative by achieving similar performance in shorter time,

or better performance in a fixed time.
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