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ABSTRACT

Supervised anomaly detection has been a tough problem due to its
necessity of special handling of unseen anomalies. In this paper,
we present a heuristic implementation of variational auto-encoder
with von-Mises Fisher prior applied to a supervised anomaly detec-
tor. The closed latent space like sphere is suitable for detecting un-
seen anomalies because we have a possibility to “fill” the space
with seen training samples. If it ideally works, the reconstruction
error will be high for all unseen anomalies. Experiments show that
our model can separate normal and anomaly samples in the spherical
latent space. It is also shown that he proposed model improves the
performance for seen anomalies without degrading the performance
for unseen anomalies.

Index Terms— Anomaly detection, auto-encoder, von Mises-
Fisher distribution

1. INTRODUCTION

Anomaly detection [1, 2] can be regarded as a binary classification
problem [3, 4]. It is often the case with absence of anomalous data
during data collection in real-world tasks, and hence, anomaly detec-
tion is grounded on outlier detection using only normal data [5, 6].
Widely used anomaly detection methods, for example, are one-class
support vector machines [7] and support vector data descriptions
(SVDD) [8]. SVDD with negative examples (SVDD-neg) [9], which
is a supervised extension of SVDD with (small number of) negative
examples, is also used when the anomaly labeled data is available.
Auto-encoder based methods are also used for the tasks [10, 11].

In practical situations, small amount of anomalous data can be
available during data collection. In this case, an anomaly detec-
tion method can be extended to a supervised binary classification
problem. However, the supervised classification algorithm cannot be
applied straightforwardly because of the following three problems:
(i) imbalanced data, (ii) labeling cost, and (iii) presence of unseen
anomalies [12]. In this paper, we tried to solve the last problem:
we propose a solution for improving the detection performance for
seen anomalies without degrading detection performance for unseen
anomalies.

Simple supervised models have not been used to anomaly detec-
tion because the unseen (unknown) samples must be also classified
as anomaly and this makes the problem difficult [13, 14]. Simple
supervised models make classification surface irrelevant to such un-
seen samples which are far from the classes used to model training.
In order to detect unseen samples as anomaly, the neural regres-
sion models with reconstruction error, such as auto-encoders (AE)
or variational auto-encoders (VAE), are empirically known to de-
tect them well and frequently used in real task [15–21]. If we com-
bine the conventional reconstruction loss (RL-loss) based framework
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Fig. 1: Prior distribution for CS-VAE on the Euclidean space (left),
and proposed 2C-vMF-VAE on hyper-spherical space (right).

and another supervised classification framework, the detection per-
formance for both seen and unseen anomalies should be high.

In our previous work, we have proposed a supervised exten-
sion of VAE-based anomaly detector called complementary-set VAE
(CS-VAE) [12]. It splits the latent space into two classes to detect
normal and (seen) anomaly. In the CS-VAE, the prior distribution
for the (seen) anomaly class is formulated as a complementary set
of the that of normal class. However, this method has a flat latent
space as same as the standard VAE. This results in the problem that
we cannot define probability density function (PDF) on each class
straightforwardly because the flat latent space has infinite area.

In this work, we present a VAE with (hyper-) spherical latent
space. If we choose sphere as the closed latent space, we can split
the surface into two finite areas. As a PDF on the latent space of
VAE, we use the von Mises-Fisher (vMF) distribution to represent
normal and anomaly then use the training method similar to [12],
then we can construct the anomaly detector. Since the calculation of
the KL divergence between two vMF distributions is not simple [22],
the calculation of its gradient might also be complex and result in un-
stable training. For stability of the training of VAE, we formulate an
approximated Kullback-Leibler (KL)-divergence between two vMF
distributions. The prior distributions for the CS-VAE on a flat la-
tent space [12] and for the two class vMF-VAE (2C-vMF-VAE) on
a closed latent space (proposed) are shown in Fig.1. It should be
noted that the concept of the complementary-set prior distribution
represented on a flat latent space (left) can be translated into a sim-
ple distribution when represented on a closed latent space (right).

2. CONVENTIONAL VAE-BASED ANOMALY DETECTION

2.1. VAE for anomaly detection

In anomaly detection, the VAE is widely used to construct generative
model of “normal data” x ∈ RD [23]. The probability of x can be
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described with latent variable z ∈ RQ introduced as

p(x) =

∫
p(x|z)p(z)dz.

To obtain more “realistic” model, we try to maximize evidence
log p(x). However, the integration over the latent variable z is usu-
ally intractable. Hence, evidence lower bound (ELBO) is maximized
instead of log p(x) itself. The ELBO is defined as

ELBO[x] = Eq(z)[log p(x|z)]− KL[q(z)||p(z)], (1)

where q(z) is an arbitrary distribution (it may depends on x) over
z, Eq(z) denotes the expectation over q(z), and KL[q(z)|p(z)] de-
notes the Kullback-Leibler (KL) divergence between q(z) and p(z).

In the VAE setting, encoder and decoder are introduced to con-
struct q(z) and p(x|z), respectively. Parameters of the encoder and
decoder, ψE and ψD , are trained to maximize the ELBO. When the
encoder and decoder are trained properly, normal data is expected to
increase the evidence. Lower value of the evidence implies that the
data is not likely normal, i.e. anomal. Therefore, the ELBO, log like-
lihood, and/or KL divergence can be a candidate of anomaly score.

The choice of p(x|z), p(z), and q(z) is important to use the
VAE as anomaly detector. In order to calculate the KL divergence in
eq. (1) analytically and to sample z from q(z) easily, the gaussian
distributions are often chosen for p(z) ∼ N (z;0, I) and q(z) ∼
N (z;µ,σ). When x is given, the encoder estimates the mean µ
and variance σ, that is,

µ = µ(x;ψE), σ = σ(x;ψE). (2)

Note that, the KL divergence in eq. (1) is now the KL divergence
between two Gaussian distribution as follows:

KL[N (z;µ,σ)||N (z;0,1)] (3)

When p(x|z) is also Gaussian distribution, the expectation of
log likelihood of the distribution can be approximated by:

Eq(z)[log p(x|z)] ≈ −
1

2N

N∑
i=1

[x− x′(zi;ψD)]2, (4)

where, x′(zi;ψD) denotes reconstruction by the decoder given the
latent variable zi sampled from q(z). Note that, when p(x|z) is
Gaussian, the maximization of ELBO can be reduced to the mini-
mization of RL[x] + KL[q(z)||p(z)], where RL[x] denotes the re-
construction (RL) loss.

2.2. Complementary-set VAE (CS-VAE) for anomaly detection

The previous subsection, the case without anomalous sample during
training period is mainly concerned. When some anomalous sam-
ples are obtained, i.e. seen anomalies, it would be better to train ψE

and ψD with those samples. The anomaly can be defined as a com-
plement of the normal set [6]. The probability for anomaly is shown
in Fig. 1 (left) and is formulated as follows:

C(z; s) =
Q∏

q=1

N (zq; 0, s
2)

[
1√
2π
−N (zq; 0, 1)

]
. (5)

While KL divergence for normal samples are still eq. (3), KL diver-
gence for anomalous samples are now defined as

KL+[N (z;µ,σ)||C(z; s)]. (6)

This KL-divergence can be analytically calculated [12]. By training
ψE and ψD using both (3) and (6), it would be expected that the KL
divergence decreases for “seen” anomalies, and the reconstruction
loss increases for “unseen” anomalies.

3. PROPOSED METHOD

3.1. Two class von Mises-Fisher VAE for anomaly detection

In this paper, we consider the prior PDFs on hyper-spherical space.
There are several DNNs that handle spherical space, such as spher-
ical CNN [24], and those DNNs are applied to language modeling
applications [25]. In this paper, we adopt the von Mises-Fisher dis-
tribution as a prior distribution. Note that, there is a prior work of
a VAE with a spherical uniform prior [26]. The major differences
between this prior work and the proposed method are shown below:

Prior selection: we selected vMF distribution as prior PDFs
because we need to concentrate the representations of normal and
anomaly in the latent spherical space to classify seen anomaly in
this space.

Reparametrization trick: our approach emits standard Eular
angle under a Gaussian-distributed assumption. We also use a rota-
tion matrix and a fixed vector to produce the vectors concentrated on
a point on the hypersphere. Our approach does not require additional
sampling procedure like [26].

In the proposed method, as show in Fig. 1 (right), vMF distribu-
tions with mean direction µ−

0 and µ+
0 are used for the normal and

anomaly prior PDFs, respectively. The same concentration parame-
ter κ0 is used for each distribution, and

∥∥µ−
0

∥∥
2
=

∥∥µ+
0

∥∥
2
= 1. In

following discussion, we describe the calculation procedures of RL-
loss and KL-loss on vMF prior PDFs. In this paper, for simplifying
the discussion, we explain the 3-D latent space (spherical surface)
case.

Reconstruction loss: In the proposed method, the reconstruc-
tion loss is defined as the squared-error in the same manner as the
Gaussian-VAE. In contrast to the Gaussian-VAE, the encoder emits
the Eular angle variables θ = (α, β, γ)⊤ and a variance parameter
σ as

θ = θ(x;ψE), σ = σ(x;ψE). (7)

Next, a noise ϵ is added in the way same as the Gaussian-VAE as

θ′ = θ + exp(σ)ϵ, (8)

where ϵ ∼ N (ϵ;0,1). Then, a rotation matrix R(θ) is composed
from the noised angle variables θ′, and a fixed vector v is rotated
using this matrix as

z′ = R(θ′)v, (9)

where ∥v∥ = 1 is an arbitrary vector. Finally, the rotated vector is
inputted to the decoder and the reconstruction error is calculated as

RL[x] = ∥x− x′(z′;ψD

)
]∥22. (10)

This reparametrization process is clearly differentiable because the
rotation matrix is composed of trigonometric functions therefore
back-propagation is possible.

KL-divergence loss: Since the calculation of the KL divergence
between two vMF distributions is not simple, the calculation of its
gradient might also be complex and result in unstable training. Thus,
we defined an alternative of the true KL divergence based on the co-
sine similarity. First, the direction vector R(θ)v is gained by ro-
tating the fixed vector without noise ϵ. Then, the cosine similarities
between the direction vector and the mean directions of normal and
anomalous prior are calculated as

ϕ− = µ−
0 ·R(θ)v, (11)

ϕ+ = µ+
0 ·R(θ)v, (12)
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Algorithm 1 vMF-VAE loss calculation

Input: x, µ0 ( = µ−
0 or µ+

0 ), κ0,v, λ
Output: lossRL + λlossKL

θ = θ(x;ψE), σ = σ(x;ψE)
lossKL ← exp(2σ)− κ0µ

⊤
0 R(θ)v

lossRL ← 0
for k ∈ [1, · · · ,K] do

ϵk ∼ N (0, I)
θ′
k = θ + exp(σ)ϵk

lossRL ← lossRL + 1
K
∥x− x′(R(θ′

k)v;ψD)∥22
end for

respectively. Then, the KL-loss for normal is defined as

KL[x] = κ1 − κ0ϕ
−, (13)

where κ1 = exp(2σ). In the same manner, that for anomaly is
defined as

KL+[x] = κ1 − κ0ϕ
+. (14)

This definition of KL-divergences are simplified version of the up-
per bound of the KL-divergence between two vMF distiribution [22].
When d = 3 in Eq. (13) of [22], the upper bound of the KL-
divergence can be written as Eq. (13).

3.2. Comparison with CS-VAE

As we can see in Fig. 1, the definition of complemental sets causes
overlap between normal and anomaly. This may leads to false detec-
tions near the intersections. (This may be important property in case
of real-world applications and needs to be studied more in detail.) In
contrast, the proposed prior tends to assign one “pole” to the normal
and the other to anomaly. Therefore, the intersection rarely occurs.

Other advantage of the vMF prior arises when the complements
is concerned. The complements of vMF distribution can be defined
straightforwardly because of its closure property. However, it is dif-
ficult to calculate analytically the KL divergence of those comple-
mental distribution. This is an important future work.

3.3. Implementation

We describe the detail of the training procedure of the proposed
method. Training method which optimizes the generative objectives
for the two classes at the same time is not obvious. Our prior work
[12] tried to optimize the two classes alternately by the epoch. In this
procedure, we need to choose which epoch (normal or anomaly) is
better to stop the optimization. Also there is another problem that the
convergence is not so clear. To overcome this problem, we created a
normal and anomaly paired batch. The paired batch consists of a pair
of randomly selected normal and anomalous samples. Then, the loss
defined by Algorithm 1 is calculate for both normal and anomaly in
each batch. Finally, the parameters of the encoder and decoder are
updated to minimize the loss.

4. EXPERIMENTS

4.1. Comparison methods

We implemented these models for this experiment.

• AE (RL): Unsupervised two units bottleneck layer autoen-
coder with reconstruction loss anomaly score. The training
data only contain the normal data.

Table 1: Experiment conditions.

# of hidden units / MLPs 2, 10, 100, 300,
500, 700, 1000, 2000

batch size 100
# of epochs 200

normal prior vector µ−
0 (0, 0,+1)⊤

anomaly prior vector µ+
0 (0, 0,−1)⊤

κ prior κ0 1
CS-VAE KL coff. C (train) 10 (only for anomaly)

vMF-VAE KL coff. C (train) 10 (normal, anomaly)
# of Monte-Carlo sampling

(VAE, CS-VAE) 1 (train), 3 (test)

dataset definitions
normal (train) MNIST 1, 2, 3 [t123]

seen anomaly (train) MNIST 4, 5, 6 [t456]
normal (eval.) MNIST 1, 2, 3 [e123]

seen anomaly (eval.) MNIST 4, 5, 6 [e456]
unseen anomaly (eval.) MNIST 7, 8, 9 [e789]

unseen anomaly (eval.) 1000 samples from
Omniglot [eOmn]

• VAE (RL): Unsupervised two latent variables variational au-
toencoder with reconstruction loss anomaly score [15]. The
training data only contain the normal data.

• CS-VAE(RL/KL/ELBO): Two-class supervised flat (two la-
tent variables) latent space variational autoencoder with three
kinds of anomaly score [12]. The training data contain both
normal and anomaly data.

• 2C-vMF-VAE(RL/KL/ELBO): Two-class supervised spheri-
cal latent space variational autoencoder with three kinds of
anomaly score. The training data contain both normal and
anomaly data (proposed).

All models contain encoder and decoder which are conventional
single hidden layer perceptrons. The CS-VAE uses the standard
Gaussian-VAE KL divergence term for normal data. For anomaly
data, the model uses the cost function derived from the KL diver-
gence from the anomaly distribution. We compared the anomaly de-
tection stability and seen/unseen anomaly detection performance of
these models. To train and test these methods, we used MNIST [27]
and Omniglot [28] dataset. The all data are converted into 784
dimensions, as same as the MNIST dataset, in advance. Other
conditions are listed in Table 1.

4.2. Spherical latent space aquisition

To investigate whether the 2C-vMF-VAE is trained so as to separate
normal and anomaly in the latent space, we decoded and visualized
the latent space of the 2C-vMF-VAE in Fig. 2. Normal digits were
place at around the north area, and anomalous digits were placed
at around south area. These patterns shows us that the two-class
spherical representation in the latent space is properly acquired.

4.3. Objective evaluation

We conducted objective evaluations of these models. The results
are evaluated in the area-under-the-receiver-operating-characteristic-
curve (AUC) scores. Evaluation data sets (denoted as [e123], [e456],
[e789] and [eOmn]) different from training data sets (denoted as
[t123] and [t456]) are used. In Figs. 3 to 5, the AUC scores cor-
responding to eight conditions for the number of hidden units listed
on Table 1 are calculated and displayed in box plots.
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North
(normal: 1, 2, 3)

South
(anomaly: 4, 5, 6)

Fig. 2: Latent space visualization using 2C-vMF-VAE decoder
(Mercator projection). Normal digits are 1, 2, and 3 [t123], and seen
anomalous digits are 4, 5, and 6 [t456]. Mean direction of normal is
north, and that of anomaly is south.

(i) (i)

(ii)

Fig. 3: Detection performance of seen MNIST anomalies (i.e. nor-
mal: [e123] vs. anomaly: [e456]).

Seen anomaly detection: Fig. 3 shows the result of seen anomaly
detection ([e123] vs. [e456]). Marked as (i) in this figure, we can
see use of KL-loss as anomaly score achieved highest performance
on both supervised anomaly detection methods. In addition, marked
as (ii), both supervised methods significantly improved the perfor-
mance of AUC score for seen anomalies than the unsupervised meth-
ods. Thus, our supervised methods have efficiently worked for de-
tection of seen anomalies.

Unseen anomaly detection: Fig. 4 and 5 show the results for un-
seen anomaly detection for similar patterns (i.e. digits, but unseen
anomalies) and significantly different patterns (i.e. non-digits), re-
spectively. In the similar patterns case shown in Fig. 4, we could
not obtain expected results. In 2C-vMF-VAE, the AUC score of KL-
loss was still higher than that of RL-loss (i), even though KL-loss
score was almost same to that of the unsupervised method, i.e. VAE
(ii). This is because that the proposed method used closed latent
space and the similar anomalies might be projected closer to the nor-
mal area. Thus, unseen anomaly also has small reconstructing error.
This result indicates that additional learning for overlooked anoma-
lies is required. On the other hand, in the significantly-different-

(ii)
(i)

Fig. 4: Detection performance of unseen MNIST anomalies (i.e.
normal: [e123] vs. anomaly: [e789]).

(ii) (i)

Fig. 5: Detection performance of unseen Omniglot character anoma-
lies (i.e. normal: [e123] vs. anomaly: [eOmn]). The models were
trained with MNIST dataset, i.e. [t123] and [t456].

anomalous-pattern case shown in Fig. 5, we obtained the expected
results. Namely, the AUC score of RL-loss were higher than that of
KL-loss (i), and RL-loss score was almost same to that of the VAE
(ii). Thus, in the significantly-different-anomalous-pattern case, the
proposed method achieved the purpose of supervised anomaly de-
tector and it improved the performance for seen anomalies without
degrading performance for unseen anomalies.

5. CONCLUSIONS

We proposed a von-Mises Fisher variational auto-encoder for con-
structing a two-class anomaly detector. For stability of the train-
ing of VAE, we formulate an approximated KL-divergence between
two vMF distributions. In experiments, we confirmed that the pro-
posed 2C-vMF-VAE model can properly acquire spherical two-class
latent space and detect seen anomalies better than classical VAE.
In addition, we confirmed reasonable results in significantly differ-
ent anomalous pattern case. Thus, we conclude that the proposed
method is effective for supervised anomaly detector. It improves the
performance for seen anomalies without degrading the performance
for unseen anomalies.

3050



6. REFERENCES

[1] V. J. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artificial intelligence review, vol. 22, no. 2,
pp. 85–126, 2004.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58,
July 2009.

[3] I. Steinwart, D. Hush, and C. Scovel, “A classification frame-
work for anomaly detection,” Journal of Machine Learning
Research, vol. 6, no. Feb, pp. 211–232, 2005.

[4] I. Steinwart, D. Hush, and C. Scovel, “Density level detection
is classification,” in Proc. NIPS, 2005, pp. 1337–1344.

[5] Y. Koizumi, S. Saito, H. Uematsu, and N. Harada, “Optimizing
acoustic feature extractor for anomalous sound detection based
on Neyman-Pearson lemma,” in Proc. EUSIPCO. EURASIP,
2017.

[6] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada,
“Unsupervised detection of anomalous sound based on deep
learning and the Neyman-Pearson lemma,” IEEE Trans. ASLP,
2018.

[7] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson, “Estimating the support of a high-
dimensional distribution,” Neural computation, vol. 13, no.
7, pp. 1443–1471, 2001.

[8] D. M. J. Tax and R. P. W. Duin, “Data domain description using
support vectors,” in Proc. ESANN, 1999, vol. 99, pp. 251–256.

[9] D. M. J. Tax, One-class classification, Ph.D. thesis, Delft
University of Technology, 2001.

[10] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep structured
energy based models for anomaly detection,” in Proc. ICML,
2016.

[11] A. Munawar, P. Vinayavekhin, and G. De Magistris, “Limit-
ing the reconstruction capability of generative neural network
using negative learning,” in Proc. MLSP, 2017.

[12] Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary set
variational autoencoder for supervised anomaly detection,” in
Proc. ICASSP, 2018.

[13] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward su-
pervised anomaly detection,” Journal of Artificial Intelligence
Research, vol. 46, no. 1, pp. 235–262, Jan. 2013.

[14] B. Du and L. Zhang, “A discriminative metric learning based
anomaly detection method,” IEEE Trans. Geoscience and Re-
mote Sensing, vol. 52, no. 11, pp. 6844–6857, 2014.

[15] J. An and S. Cho, “Variational autoencoder based anomaly
detection using reconstruction probability,” 2015.

[16] Y. Ma, P. Zhang, Y. Cao, and L. Guo, “Parallel auto-encoder
for efficient outlier detection,” in Proc. IEEE BigData. IEEE,
2013, pp. 15–17.

[17] M. Sakurada and T. Yairi, “Anomaly detection using autoen-
coders with nonlinear dimensionality reduction,” in Proc.
MLSDA, New York, NY, USA, 2014, MLSDA’14, pp. 4:4–
4:11, ACM.

[18] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal,
and G. Shroff, “LSTM-based encoder-decoder for multi-sensor
anomaly detection,” in Proc. ICML, 2016.

[19] R. C. Aygun and A. G. Yavuz, “Network anomaly detection
with stochastically improved autoencoder based models,” in
Proc. IEEE CSCloud, June 2017, pp. 193–198.

[20] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust
deep autoencoders,” in Proc. SIGKDD, New York, NY, USA,
2017, KDD ’17, pp. 665–674, ACM.

[21] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu,
D. Cho, and H. Chen, “Deep autoencoding gaussian mixture
model for unsupervised anomaly detection,” in Proc. ICLR,
2018.

[22] T. Diethe, “A note on the kullback-leibler divergence
for the von mises-fisher distribution,” arXiv pre-print,
arXiv:1502.07104, 2015.

[23] D. P. Kingma and M. Welling, “Auto-encoding variational
Bayes,” arXiv preprint arXiv:1312.6114, 2013.

[24] T. S. Cohen, M. Geiger, J. Koehler, and M. Welling, “Spherical
CNNs,” in Proc. ICLR, 2018.

[25] K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang, “Generating
sentences by editing prototypes,” Trans. of the Association for
Computational Linguistics, 2018.

[26] T. R. Davidson, L. Falorsi, N. De Cao, T. Kipf, and J. M. Tom-
czak, “Hyperspherical variational auto-encoders,” in Proc.
UAI, 2018.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[28] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-
level concept learning through probabilistic program induc-
tion,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

3051


		2019-03-18T10:56:30-0500
	Preflight Ticket Signature




