
NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION APPROXIMATION IN
DEEP REINFORCEMENT LEARNING

Zhixiang Wang1, Xi Xiao1, Guangwu Hu2∗, Yao Yao1

Dianyan Zhang1, Zhendong Peng1, Qing Li3, Shutao Xia1,3

1 Tsinghua University, Beijing, China
2 School of Computer Science, Shenzhen Institute of Information Technology, Shenzhen, China

3 Southern University of Science and Technology, Pengcheng Laboratory, Shenzhen, China

ABSTRACT
Reinforcement learning is a framework to make sequen-

tial decisions. The combination with deep neural networks
further improves the ability of this framework. Convolutional
nerual networks make it possible to make sequential decisions
based on raw pixels information directly and make reinforce-
ment learning achieve satisfying performances in series of
tasks. However, convolutional neural networks still have own
limitations in representing geometric patterns and long-term
dependencies that occur consistently in state inputs. To tackle
with the limitation, we propose the self-attention architecture
to augment the original network. It provides a better balance
between ability to model long-range dependencies and com-
putational efficiency. Experiments on Atari games illustrate
that self-attention structure is significantly effective for func-
tion approximation in deep reinforcement learning.

Index Terms— reinforcement learning, deep learning,
self-attention, Atari game

1. INTRODUCTION

Recently, reinforcement learning has achieved satisfying per-
formance in many tasks such as video games[1, 2] and chess
game Go[3, 4]. It is a framework to make sequential de-
cisions. In the formulation of reinforcement learning, an
agent interacts with an environment over time. At timestep
t, the agent observes the state st defined in a state space
S and selects an action at defined in an action space A.
The action chosen is decided by a policy π (at|st). Then
the agent receives an instant reward rt and makes a tran-
sition to next state st+1 following reward function R(s, a)
and transition probability P (st+1|st, at) respectively. The
R(s, a) and P (st+1|st, at) are decided by the environment
dynamics. Generally, the agent repeats this process until it
reaches a terminal state. The final return Rt is defined as
the discounted accumulation of sequential instant rewards∑∞

k=0γ
krt+k with a discount factor γ ∈ (0, 1]. During the

*Corresponding Author: Guangwu Hu(hugw@sziit.edu.cn)

process, the agent adjusts the policy π (at|st) to maximize

Es

[∞∑
k=0

γkrt+k

]
, s ∈ S.

Various game environments are adopted to compare dif-
ferent reinforcement learning algorithms (e.g. AC [5], A3C
[6], TRPO [7], PPO [8], ACKTR [9], Deep Q-Network(DQN)
[2]) which are ranked based on the final score in certain game
environments. The Arcade Learning Environment(ALE)[1] is
composed of more than 50 Atari games. It provides raw pix-
els for agents to learn a policy. In ALE[1], DQN[2] was the
first learning algorithm that showed human expert-level con-
trol. A convolutional neural network was used to approximate
Q(s, a) in the framework of Q-learning. For games with par-
tially observed states, Deep Recurrent Q-network adds a re-
current neural network layer before output and achieves sat-
isfying performance. In[10], deep deterministic policy gra-
dient is proposed by training a CNN-based agent end-to-end
in TORCS[11]. [12] demonstrated that a CNN-based agent
can achieve human-like behaviors in basic scenarios in a first-
person shooter game environment.

From the perspective of deep learning, reinforcement
learning faces a few challenges. Firstly, Deep learning re-
quires large amounts of labelled data while the scalar reward
in reinforcement learning is generally sparse, noisy and de-
layed. Additionally, Deep learning assumes data samples to
be independent and follow a fixed distribution, while states in
reinforcement learning are generally highly correlated with
a consistently changing distribution. V Mnih et al.[1, 2]
demonstrated that a convolutional neural network can over-
come these problems to learn a human-level policy from raw
pixels directly. However convolutional neural networks still
have own limitations. The ability to capture geometric or
structural patterns may be not satisfying. For example, in
CNN-based image generative models[13], the texture infor-
mation is usually generated well and the geometric infor-
mation is generally ignored. The generative model creates
realistic image classes such as sky, ocean and landscape,
while for other image classes such as dog or cat, it generates
realistic fur texture and fails to create clearly defined separate

3042978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Fig. 1. Structure of a self-attention layer. ⊗ means matrix multiplication. The Softmax is performed on each row inside one
channel. q (x) , k (x) , v (x) are implemented as 1× 1 convolutions.

feet in the right place. one possibly reasonable explanation is
that different image regions can only build up dependencies
and relationships through convolution operation with a local
receptive field. Long-range dependencies can only be built up
through a enough large number of convolutional layers. In-
creasing the kernel size of convolutional operation may help
to connect different image regions better but will also lose
the computational efficiency obtained by local convolutional
operation.

In reinforcement learning problem setting, geometric in-
formation and dependencies over different image regions
may be generally more important than that in other tasks such
as image classification and image generation. The recently
proposed self-attention structure[14, 15] is a better choice
to model long-range dependencies among different image
regions in a computationally efficient way. The self-attention
mechanism calculates the response at a position as a weighted
sum of the features at all other positions with only a small
computational cost. The self-attention structure has also
been adopted in other tasks such as generative adversarial
network[16] and video classification[17].

In order to tackle with the weakness of convolutional net-
works in build up long-range dependencies, we introduce the
self-attention structure into the reinforcement learning frame-
work. For function approximation, the self-attention structure
helps the original convolutional neural network to strengthen
the ability to process long-range dependencies over different
image regions which contains more geometric information.
It perform computations among different regions of feature
maps so that relationships among various regions can be for-
mulated during the training process. To evaluate our proposed
method, we conduct experiments on Atari tasks defined in
OpenAI Gym[18]. The Adoption of this structure is shown
to be an effective way to balance long-range dependencies
and computational efficiency. To the best of our knowledge,
it is the first time to adopt self-attention structure into function
approximation into reinforcement learning.

2. SOLUTION DESCRIPTION

2.1. Reinforcement Learning Formulation

In reinforcement learning, the policy π (a|s) was represented
by a machine learning module. In deep reinforcement learn-
ing, this machine learning module is a neural network. State

value function V (s) = E[
∞∑
k=0

γkrk|s] and action value func-

tion Q(s, a) = E[
∞∑
k=0

γkrk|s, a] are also represented by

machine learning modules (e.g. convolutional neural net-
work) to guide the policy to update itself towards a right
direction. Functions π (a|s) , V (s) and Q (s, a) need to be
approximated by proper machine learning modules. Differ-
ent representation abilities of modules lead to different final
performances.

Table 1. Final scores of 45 Atari games. The score is
computed by taking average of Rewards over final 10000
timesteps.

Game CNN
Self-

attention
Game CNN

Self-

attention
Game CNN

Self-

attention

Amidar 275 391 Frostbite 250 251 PrivateEye 64.8 144

Asterix 5588 6510 Gopher 907 924 Qbert 12412 14142

Atlantis 1729268 1958670 Gravitar 335 372 Riverraid 7426 9100

BankHeist 1128 1173 Hero 19462 19957 RoadRunner 32470 32984

BeamRider 4184 4252 IceHockey -6.8 -6.5 RoboTank 2.2 2.8

Berzerk 766 785 JamesBond 2429 2312 Seaquest 1701 1727

Bowling 23.7 24.1 Kangaroo 559 462 Skilling -28680 -16189

Breakout 382 387 Krull 7886 7903 SpaceInvader 758 803

Centipede 4178 3812 KungFuMaster 28564 27334 StarGunner 44623 45296

Chopper

Command
995 1362

Montezuma's

Revenge
0.1187 0.1209 TimePilot 3491 3431

CrazyClimer 103959 105340 MsPacMan 1942 2127 Tutankhan 176 185

DemonAttack 18005 22932 NameThisGame 5658 5750 UpNDown 31341 43661

DoubleDunk -15.8 -16.1 Phoenix 13188 14938 Venture 0 0

FishingDerby 21.5 16.6 Pitfall -65.2 -50.3 YarsRevenge 13793 12365

Freeway 0.0017 0.0017 Pong 18.1 19.5 Zaxxon 15.3 21.4

3043

Fig. 2. Training process of 8 games. Rewards means final episode return in one round of a game. It is computed by summing
up all instant rewards of every timestep in that round of the game. The agent gets a state input and output an action in one
timestep.

2.2. Self-Attention Function Approximation

For CNN-based function approximation, the input raw pixel
states are processed in a local receptive field. The structure
of convolutional layers decides that it is an computationally
inefficient way to model long-range dependencies between
widely separated spatial regions. The proposed structure[17]
is adopted into deep reinforcement learning framework to ex-
tract features of input states.

The input pixel image is first processed by several con-
volutional layers and transformed into image features x ∈
RC×H×W where C means ’channel’, H means ’height’
and W means ’width’. xi represents the element in ith
position among all the C × H × W positions. The input
x is duplicated into 3 copies which are query xquery, key
xkey and value xvalue[15]. Then we do transformation and
get q(xquery) = Wqueryxquery, k(xkey) = Wkeyxkey and
v(xvalue) = Wvaluexvalue seperately. The metric Wquery,
Wkeyand Wvalue are the network parameters to be learned.
Since xquery, xkey , xvalue are the same, we just use q(x),
k(x), v(x) to represent q(xquery), k(xkey), v(xvalue) and
sij = q (xi) k (xj). The output of the self-attention layer has
the same size as the input. When we rebuild the element in
the jth position, aj,i indicates how much attention should be
paid to the ith location.

aj,i =
exp (sij)

C×H×W∑
j=1

exp (sij)

The output element in the jth position is calculated in the
following way.

yj =

C×H×W∑
i=1

aj,iv (xi)

Finally, we multiply the output by a parameterized scalar
β and add it back to the input feature map. Then we get the

final output yout.
yout = βy + x

3. EXPERIMENT SETTING

To evaluate our method, we conduct experiments on the Atari
game tasks defined in OpenAI Gym[18] with A2C algorithm
which is a synchronized version of A3C algorithm[10].

Fig. 3. Comparison of different positions to add the self-
attention layer. layer1 means adding it before the first con-
volutional layer. layer1234 means adding four self-attention
layers.

We adopt the same proprecess as [1, 2]. Raw Atari frames
are 210×160 pixel images with a 128 color palette. For com-
putational efficiency, we convert the RGB image to a gray-
scale image and then down-sample it to 110× 84. Finally we
crop it and get an 84 × 84 region which captures the playing
area. We stack 4 84× 84 images together as the state input.

The state value function and the policy share one network
to extract features. The first layer is a convolutional layer
composed of 32 8 × 8 filters and the stride is 4. The second
convolutional layer consists of 64 4×4 filters and the stride is
2. The third convolutional layer contains 32 3 × 3 filters and
the stride is 1. The following is a fully connected layer with
a 512-dimensional output. In the last layer, we get our action
output and state value.

We conduct following experiments. To show the effec-
tiveness of the self-attention structure, we add a self-attention

3044

Fig. 4. Comparision of different structures. The self-attention
layer is added before the fully connected layer. Conv1 means
replacing it with a convolutional layer composed of 32 1 × 1
filters. Conv2 means replacing it with a convolutional layer
composed of 32 3× 3 filters. The stride is 1.

layer to the original convolutional network and test the final
scores on 45 Atari games. Then we replace the self-attention
layer with two kinds of convolutional layers to do compari-
son. Finally, we try to add the self-attention layer to different
positions of the network and compare the difference. Practi-
cally, we simplify q (x), k (x), v (x) as 1× 1 convolutions of
feature maps with stride 1 and softmax is performed only on
each row inside each feature channel.

4. EXPERIMENT RESULT

To show the effectiveness of a self-attention layer, we add it
between the third convolutional layer and the fully connected
layer. We conduct experiments on 45 Atari Games based on
OpenAI Gym[18] environment. The results are shown in Ta-
ble 1. As we can see, most games gain benefit and perform
better. Among all these 45 games, about 15 ones gain sig-
nificant improvement. We choose 8 of them randomly and
conduct further experiments to do analysis. The training pro-
cesses of the 8 games are shown in Figure 2, and we can see
the improvement in terms of final episode returns and training
efficiency. The ’Rewards’ in the figure means final episode
return in one round of a game. We sum up all the instant re-
wards of every timestep in one round of a game to get the final
episode return. In one timestep, the agent observes the state
once and choose an action. In a self-attention layer, input and
output has the same number of channels.

To exclude the influence brought by more parameters,
we replace the self-attention layer with a convolutional layer
composed of 32 1 × 1 filters with the stride 1. This structure
has the same number of parameters as the self-attention layer
between the third convolutional layer and fully connected
layer. what is different is the way to utilize these parameters.
Generally, a convolutional layer with more parameters means
better feature extraction ability. To show the effectiveness
brought by our self-attention structure further, we also replace
the self-attention layer with another convolutional layer com-
posed of 32 3×3 filters and the stride is 1. This convolutional
layer needs more parameters than the self-attention layer. If it
performs worse than the self-attention layer, we may be more
confident to contribute the performance improvement to the
non-local self-attention structure. Inevitably, in this setting,
the fully connected layer will change from original ’32×7×7’
× 512 to ’32 × 5 × 5’ × 512. As shown in Figure 4, we can
see, generally, self-attention performs better than the other
two settings. Comparing the same games in Figure 2 and
Figure 4, it is shown that more parameters don’t always lead
to better performance. In several games, more parameters
and improper structure lead to worse performance.

To explore a better way to utilize self-attention structure
and how a self-attention layer brings effect, we employ the
self-attention layer in different positions, before the first con-
volutional layer, before the second convolutional layer, before
the third convolutional layer, before the forth fully connected
layer and before all these layers with four self-attention lay-
ers. As shown in Figure 3, we can see, self-attention layers
provide benefit on each position and more self-attention lay-
ers may not always perform best.

5. CONCLUSIONS

In order to tackle with the weakness of convolutional net-
works in building up long-range dependencies, in this pa-
per, we incorporate the self-attention mechanism into the
deep reinforcement learning framework and propose the self-
attention function approximation. This structure can build
up relationships among different regions of the state input
effectively with satisfying computational efficiency. Our
experiments illustrate the effectiveness of the self-attention
structure compared with a pure convolutional structure.

6. ACKNOWLEDGMENTS

This work is supported by the NSFC projects(61773229,
61771273, 61202358), the National High-tech R&D Pro-
gram of China(2015AA016102), Guangdong Natural Science
Foundation(2018A030313422), the RD Program of Shen-
zhen(JCYJ20160531174259309, JCYJ20170307153032483,
JCYJ20160331184440545, JCYJ20170307153157440, JCYJ
20170817115335418).

3045

7. REFERENCES

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, vol. abs/1312.5602, 2013.

[2] V Mnih, K Kavukcuoglu, D Silver, A. A. Rusu, J Ve-
ness, M. G. Bellemare, A Graves, M Riedmiller, A. K.
Fidjeland, and G Ostrovski, “Human-level control
through deep reinforcement learning.,” Nature, vol. 518,
no. 7540, pp. 529, 2015.

[3] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis, “Mastering the game of
Go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[4] David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yu-
tian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel, and Demis
Hassabis, “Mastering the game of go without human
knowledge,” Nature, vol. 550, pp. 354–, Oct. 2017.

[5] R. S. Sutton, “Policy gradient methods for reinforce-
ment learning with function approximation,” Advances
in Neural Information Processing Systems, vol. 12, pp.
1057–1063, 2000.

[6] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in Proceed-
ings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, 2016, pp. 1928–1937.

[7] John Schulman, Sergey Levine, Philipp Moritz,
Michael I. Jordan, and Pieter Abbeel, “Trust region pol-
icy optimization,” Computer Science, pp. 1889–1897,
2015.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal Policy Optimization Algo-
rithms,” ArXiv e-prints, July 2017.

[9] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun
Liao, and Jimmy Ba, “Scalable trust-region method for
deep reinforcement learning using kronecker-factored
approximation,” in Advances in Neural Information

Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., pp. 5279–5288. Curran Associates,
Inc., 2017.

[10] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra, “Continuous control with
deep reinforcement learning,” Computer Science, vol.
8, no. 6, pp. A187, 2015.

[11] Bernhard Wymann, Christos Dimitrakakisy, Andrew
Sumnery, and Christophe Guionneauz, “Torcs: The
open racing car simulator,” 2015.

[12] Michał Kempka, Marek Wydmuch, Grzegorz Runc,
Jakub Toczek, and Wojciech Jaśkowski, “ViZDoom: A
Doom-based AI research platform for visual reinforce-
ment learning,” in IEEE Conference on Computational
Intelligence and Games, Santorini, Greece, Sep 2016.

[13] Takeru Miyato and Masanori Koyama, “cGANs with
projection discriminator,” in International Conference
on Learning Representations, 2018.

[14] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit, “A decomposable attention model for
natural language inference,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, Novem-
ber, 2016.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in NIPS, 2017.

[16] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and
Augustus Odena, “Self-attention generative adversarial
networks,” CoRR, vol. abs/1805.08318, 2018.

[17] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and
Kaiming He, “Non-local neural networks,” in CVPR,
2018.

[18] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba, “Openai gym,” CoRR, vol.
abs/1606.01540, 2016.

3046

		2019-03-18T11:07:26-0500
	Preflight Ticket Signature

