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ABSTRACT

In this paper, we focus on dealing with problems of large-pose
face alignment. Recently proposed heatmap-based algorithms
have made promising performance on this problem. Howev-
er, the traditional heatmap is constructed based on Gaussian
model with fixed variance, which is inconsistent with the lo-
cal shape of faces. In this paper, we propose a shape-aware
heatmap to efficiently solve the problems of large-pose face
alignment. Specifically, we design a novel heatmap based on
Gaussian mixture model, where positions of several adjacen-
t landmarks are utilized to construct different components.
Thus the probability distribution is modified to fit the shape
of the local region. The experimental results on Menpo-3D
and AFLW2000-3D databases show that the proposed method
outperforms the state-of-the-art algorithms.

Index Terms— Face alignment, Landmark, Shape-aware
Heatmap

1. INTRODUCTION

Face alignment is the process of detecting facial landmark-
s, which is widely used in other facial analysis tasks, such
as face recognition [1, 2], facial expression recognition [3, 4]
and head pose estimation [5]. However, it is still a challeng-
ing task due to various head poses. As shown in Fig.1, some
landmarks may be invisible and the appearances are signifi-
cant different with the change of the head pose. Therefore it
is hard to train a robust model to localize facial landmarks.
Recently, heatmap regression is widely used in both hu-
man pose estimation algorithm [6, 7] and face alignment [8].
Belagiannis et al. [6] propose a ConvNet model to regress a
heatmap for each key point, and the ground-truth label is a
heatmap synthesised by placing a Gaussian with fixed vari-
ance at the ground-truth position of the key point. Similar to
[6], Bulat et al. [8] stacked four HG nets with the hierarchi-
cal, parallel and multi-scale blocks and also regress a set of
heatmaps to predict the positions of facial landmarks. The
proposed HG net has made a great progress in the field of
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Fig. 1. Faces with various head poses. The red dots show
the visible facial landmarks, and the blue dots represent the
invisible facial landmarks.

large-pose face alignment. Note that both [6] and [8] utilize a
Gaussian with fixed variance to construct a heatmap for each
key points. However, since each value of the heatmap repre-
sents the probability that the corresponding pixel is the target
key point, the probability distribution of the heatmap should
base on the shape of the local region around the key point. In
fact, Belagiannis et al. [6] proposed body part heatmaps to as-
sist in the key points detection. The variance of the heatmap
is based on the Euclidean distance between two key points.
Such heatmap contains the local shape information accord-
ing to the distribution of the Gaussion model. But for facial
landmark detection, positions of adjacent points are relatively
complex, so the problems are that how to define a effectively
shape-aware heatmap.

To overcome the above-mentioned problem, we propose
a novel shape-aware heatmap, which modifies the probability
distribution of the heatmap according to the outline of a fa-
cial component in the local region. The maximum value of
the shape-aware heatmap is still at the ground truth position,
while values of surrounding points should be determined by
the local shape. Taking the heatmap of landmark A in Fig.2
for example, the distance between point B and A is same with
that point C and A. But the value of B in this heatmap is
larger than that of C, since B is along the eyebrow while C
is not. To realize such idea, we design a Gaussian mixture
model, where Gaussians with different scales are placed ac-
cording to the positions of target landmark (e.g., A) and it-
s adjacent points (e.g., B) to preserve the local shape infor-
mation. At last, we demonstrate the efficiency of the shape-
aware heatmap on two experiments. The first one is training
on Menpo-3D [8] and testing on AFLW?2000-3D [9], and the
second one is training on 300W-LP [9], and testing on both
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Fig. 2. Comparison between the shape-aware heatmap and
the traditional heatmap. We only show the local region part
of the heatmap for a better observation. For each heatmap, the
brighter the pixel on the heatmap, the higher the probability
that the corresponding position is the landmark. And we use
the blue arrow to show the direction in which we expect the
probability to slowly decline.

Menpo-3D and AFLW2000-3D. These two experiments show
that our algorithm based on the shape-aware heatmap is effec-
tive, and the results on the large-pose faces are significantly
improved.

To sum up, our contributions are as follows:

1. We are the first to propose the shape-aware heatmap,
which preserves both the position and local shape informa-
tion. While the original heatmap only utilizes the position of
the landmark. And an effective method is proposed, which
constructs the shape-aware heatmap by a careful designed
Gaussian mixture model.

2. Experimental results on public databases have demon-
strated the effectiveness of the proposed shape-aware heatmap,
especially on the large-pose faces.

2. OUR APPROACH

In this section, we focus on the improvement of the heatmap,
which has been demonstrated to be effective on facial align-
ment. We first introduce the proposed shape-aware heatmap,
followed by the adjacent points chosen. Finally, we present
how to embed the proposed heatmap to the existing network
of landmark localization.

2.1. Shape-aware Heatmap

Heatmaps are frequently applied to key point localisation,
they are a set of two-dimensional matrixes, which represent
the per-pixel energy for the presence of the corresponding
point at that pixel location. Previous methods utilized the
Gaussian model to build the traditional heatmap, where the
maximum point corresponds to the position of the key point,
as shown in Fig. 2. However, besides the position informa-
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Fig. 3. Adjacent points of each landmark are the connected
points. Note that the red points only have one adjacent point.

tion, heatmaps can also preserve the local region information.
Such shape information can be gathered by the relative po-
sitions of landmarks since they are labeled on the facial
components.

To preserve the shape information, we adapt a Gaussian
mixture model to change the probability distribution of each
heatmap and fit the local facial outline. Three constraints
are proposed to ensure the effectiveness of the shape-aware
heatmap. First, the probability values of the points along the
local outline should be enhanced. For example, for the point
on the middle of the eyebrow, its probability should decrease
slowly along the eyebrows, but fast in other directions, the
blue arrows in Fig. 2 show the expected enhanced directions.
In order to achieve the first principle, the positions of the adja-
cent landmarks can be utilized to build our Gaussian mixture
model. Thus when we add another component at the con-
nection between target landmark and its adjacent landmarks,
the probability of the pixels on the expected directions will
increase. The selection of adjacent points will be shown in
next Subsection. Second, it is obvious that we can not change
the position of the maximum probability, which should still
on the ground truth position. Such deviation may occur when
we construct the corner landmarks, i.e. mouth corner and eye
corner. Third, the probability value from the target landmark
to the adjacent points should be monotone decreasing, which
means the farther to the target landmark, the smaller proba-
bility value.

Following the three constraints, we next show how we
construct the shape-aware heatmap. For the ¢ — th landmark,
l; at the position (x;,y;), L; denotes indexes of its adjacent
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landmarks. The shape-aware heatmap can be defined by E-
quation (1).

H; = N(zi,y:) + Z scale

JEL;
( ) * st ( ) * st @
T; — x;) * ste . — ;) x ste

len len

where N (z,y) is the standard Gaussian distribution
method, the center is placed at the position (x,y). len is
Euclidean distance between [; and I;, we drop the adjacent
points whose positions are same with (z;,y;) to ensure the
len is not equal to 0. step is the expected distance between
different component of the Gaussian mixture Model. And the
fixed value scale is the mixture coefficient of our model. We
will explain the effect of the parameters following the order
of the three principles. First, the addition of the N (x;, ;)
and other components changes the probability distribution
according the local shape, which slow down the probability
decline along the local outline. Second, scale is less than one
to ensure the joint components will not change the position of
the maximum point. At last, we make a transform on (z;, y;)
to prevent the valley on the new probability distribution. It
is achieved by limiting the distance between component cen-
ters and ground truth position (z;,y;). Some examples of
shape-aware heatmaps are shown in Fig. 2.

2.2. Adjacent Points

Since the shape information is obtained from the locations of
the adjacent landmarks, the choice of the adjacent point set
L; for the shape-aware heatmap H; is important. In order to
express local shapes relatively accurately, the adjacent land-
mark (z,,y;) should be close to landmark (x;,y,) and the
connection of (z,y:) and (z;,y;) is expected to be placed
on the outline of facial component. In general, L; is the set
{i — 1,47 + 1}, the landmark and its adjacent points are al-
most in a straight line. But there are two special cases. The
boundary points only have one adjacent points, and the adja-
cent points of corner landmarks are special, whose angles are
acute. Fig.3 use the 68 landmarks as an example to show the
adjacent points of different landmarks. The adjacent points of
each landmark are the connected ones.

2.3. Overall Architecture

In this paper, we focus on the improvement of the heatmap,
we choose 3D-FAN [8] as the common architecture to make
a comparison with the traditional heatmap and shape-aware
heatmap. 3D-FAN stacks four hour-of-glass(HG) networks.
Each HG network ends with a set of heatmaps to predict the
location of the landmarks, and all of four sets of heatmaps
are involved in the calculation of loss while training, but only
the last set of heatmaps is used when testing. And we replace
traditional heatmaps by shape-aware heatmaps as the ground-
truth label.

Fig. 4. Results visualization of AFLW2000-3D [9] (row 1-2,
training on Menpo-3D [8]) and Menpo-3D (row 3-4, train-
ing on 300W-LP [9]) database. For each pair of images, the
bottom image is predicted by the proposed algorithm, which
is based on the shape-aware heatmap, while the top image is
predicted by the baseline. For a better comparison, we use the
blue rectangles to mark the areas with large differences.

3. EXPERIMENTAL RESULTS

In this section, we firstly introduce the experimental setup
in subsection 3.1, including introductions to three databases,
metric methods and the parameter setting. Second, the com-
parision between the shape-aware heatmap, the baseline and
other state-of-art algorithms will be shown in subsection 3.2.

3.1. Experimental Setup

To validate the performance of the proposed method on large-
pose faces, we choose three public face databases with wide
range of head poses and 68 labeled landmarks.

Menpo-3D is re-annotated by Bulat et al. [8]. The num-
ber of the landmarks is unified to 68. Menpo-3D have 8955
face images (2300 images are profile faces). AFLW2000-
3D [9] is built by the first 2000 images from AFLW [14].
Both Menpo-3D and AFLW?2000-3D contain a wide range
of poses (yaw from —90° to —90°). To further validate the
shape-aware heatmap on large-pose faces, we manually se-
lect 365 images with profile faces from AFLW2000-3D and
build a challenging test set. 300W-LP [9] is a large scale
face database, which standardized several databases with 68
landmarks, including AFW [15], LFPW [16], HELEN [17],
IBUG [18] and XM2VTS[19]. 300W-LP contains 61,225 im-
ages and uses the profiling method to get the large-pose faces,
ranging from —90° to —90°.
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Table 1. Comparison of NME (%) on the AFLW2000-3D [9] dataset. The first value of baseline and shape-aware heatmap
is calculated by the whole dataset same with other algorithms, while the second value is calculated by the profile faces.

Method ‘ SDM [10] 3DDFA[9] 3DSTN[11] DHM+RHG [12] JVCR[13] Baseline [8] Shape-aware Heatmap
NME ‘ 6.12 5.42 4.49 3.85 3.64 2.13/3.53 2.11/3.35
, AFLW2000-3D: 1998 faces , AFLW2000-3D: 365 profile faces Menpo-3D: 8955 faces
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method based on shape-aware heatmap outperforms baseline
[8] on AFLW2000-3D.

We choose 3D-FAN [8] as the baseline to make a com-
parison with the proposed method based on the shape-aware
heatmap. And the Normalized Mean Error (NME) is used as
the evaluation metric to measure the quality of predicted re-
sults. Following [8], the NME is normalized by square root
of the face size. As for the parameters, the step is equal to 1
to prevent the valley in the probability distribution. After the
rounding of the coordinates, eight positions may be utilized to
place components of Gaussian mixture model. And the scale
is equal to 0.22 to ensure the position of the maximum proba-
bility point is unchanged when we add different components.
For a fair comparison, we use the same batch size (15) and
learning rates when we training the baseline and the proposed
method.

3.2. Comparison

We conduct two experiments to verify the effectiveness of the
shape-aware heatmap.

First, we train both the proposed method and baseline [8]
on Menpo-3D [8] and test on AFLW2000-3D [9]. The com-
parison of Cumulative Errors Distribution (CED) diagrams is
displayed in the left of Fig.5. Our method outperforms the
strong baseline. To validate the performance of the proposed
method on profile faces, we select 365 profile faces from
AFLW2000-3D and their experimental results are shown in
the right subfigure of Fig.5. Our method performs better on
the large-pose faces. The NMEs are reduced from 1.91 to
1.78 on the whole database and reduced from 2.76 to 2.42 on
profile faces. some examples are displayed in Fig. 4.

NME

Fig. 6. CED diagrams of different methods on Menpo-3D
[8], which is trained on 300W-LP [9]. The proposed method
outperforms baseline [8].

To further validate the effectiveness of the shape-aware
heatmap on large scale databases, we train the proposed
method and baseline on a large scale database 300W-LP, and
test on both Menpo-3D and AFLW2000-3D. Fig.6 shows that
our method still outperforms the strong baseline on Menpo-
3D, some detection results can be found in Fig. 4. And the
comparison between the proposed method and the state-of-art
methods can be found in Tabel. 3, the NMEs are taken from
Tabel 1 of [12] and Tabel 4 of [13], NME results on above
10000 images show that the shape-ware heatmap is effective
especially on large-pose faces.

4. CONCLUSION

In this paper, we propose a shape-aware heatmap, which is
constructed by a carefully designed Gaussian mixture model
according to the shape of local region. Adjacent points are
defined and utilized to construct the Gaussian mixture mod-
el and make the probability distribution fit the local shape.
We are the first to propose a method to build a shape-aware
heatmap and the experimental results show that the pro-
posed method based on shape-aware heatmap outperforms
the strong baseline and the state-of-art algorithms, especially
on faces with large head poses. The shape-aware heatmap
can be further applied to other heatmap-based algorithms.
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