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ABSTRACT
Dynamic adaptive video streaming over HTTP (DASH)

plays a key role in video transmission over the Internet. The
conventional DASH adaptation approaches concentrate on
optimizing the overall quality of experience (QoE) for all
client sides, neglecting the QoE diversity of different users.
In this paper, we formulate the QoE optimization of multi-
user preferences as a multi-task deep reinforcement learning
problem, in which QoE refers to the metrics of visual quality,
fluctuation and rebuffing events. Then, we propose a meta-
learning framework for multi-user preferences (MLMP) as a
new DASH adaptation approach. Finally, the simulation re-
sults show that the proposed approach outperforms state-of-
the-art DASH adaptation approaches in satisfying the differ-
ent users’ QoE preferences regarding the three metrics.

Index Terms— DASH, adaptation approaches, user pref-
erences, meta-learning, reinforcement learning

1. INTRODUCTION

In the next five years, mobile traffic is expected to grow
exponentially [1], in which 75% of the data are in the form
of video streams. Recently, dynamic adaptive video stream-
ing over hypertext transfer protocol (DASH) [2] has become
a dominant standard for video streaming over the Internet.
In the DASH protocol, video segments are encoded with dif-
ferent bit-rates to form an adaptation set of representations.
DASH adaptation is needed to select one representation based
on the network throughput to optimize the quality of expe-
rience (QoE). However, this is challenging due to the three
following reasons: (1) conflicts in different metrics of QoE
exist, such as visual quality, fluctuation and rebuffing events;
(2) the network throughput may dramatically change; and (3)
the user preference on different metrics of QoE is complex,
thus making it difficult to model.

To solve the above challenges, several DASH adapta-
tion approaches have been investigated such as [3–7]. How-
ever, most of them either cannot be generalized to vary-
ing network conditions or requires an accurate estimation
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of the future throughput. Hence, several approaches based
on reinforcement learning and deep reinforcement learning
(DRL) [8] have been proposed to optimize multiple metrics
of QoE in DASH adaptation, which consider the future net-
work throughput by learning from past experiences [9–13].
However, people in the multi-user scenario may have their
own preferences on the different metrics of QoE [14, 15],
such that the individual preference should be taken into ac-
count. This is out of scope for the existing single-model RL
approaches [16].

In this paper, we propose a novel DASH adaptation ap-
proach, in which a meta-learning framework for multi-user
preferences (MLMP) is developed to optimize the QoE across
different users. Specifically, we first formulate the QoE opti-
mization of multi-user preferences as a multi-task DRL prob-
lem, as a type of meta-learning. Then, we design the MLMP
framework to solve the proposed problem, where the com-
mon knowledge and diversity of each user’s preference can
be learned in a hierarchy pattern. To our best knowledge, this
paper is the first attempt to apply meta-learning framework
for optimizing the QoE in DASH.

2. SYSTEM MODEL

2.1. QoE metrics for DASH

As depicted in [11], a video sequence is encoded to differ-
ent representations at various bit-rates and resolutions, which
are divided into several segments. A DASH client requests
and downloads these segments sequentially. Note that, if the
client-side buffer occupancy is emptied before the next seg-
ment is downloaded, a rebuffing event will take place. Details
about the mathematical model of DASH can be found in [11].

Following [17, 18], we consider three metrics influencing
the QoE for DASH: instantaneous visual quality, quality fluc-
tuation and rebuffing events. Specifically, we choose struc-
tural similarity (SSIM) [19] as the visual quality metric, de-
noted by qt. Let φt and Lt denote the rebuffing time and the
current segment, then the overall QoE can eventually be com-
puted as follows:

QoELt
= α · qt − β · |qt − qt−1| − γ · φt. (1)

In (1), α, β and γ are the weights for the instantaneous visual
quality, the fluctuation and the rebuffing time, respectively.
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2.2. Multi-task DRL modeling for DASH adaptation

Following the assumption in [11], we can formulate
DASH adaptation as a 5-tuple markov decision process, with
state space S, action space A, reward function R : S × S ×
A → R, transition probability P : S × A × S → [0, 1] and
discount factor η. Then, we can apply DRL for optimizing the
QoE. As depicted in Figure 1, at each time step t, the agent,
i.e., the video client, observes environment state st and then
selects a certain representation with quality qt to download.
Hence, the action at each time step is also denoted as qt.

To estimate the QoE of (1), the state space S is composed
of the four following elements: (1) the throughput for the last
few time steps (for predicting the current throughput [11]); (2)
the last rebuffing time; (3) the quality of the last downloaded
segment; and (4) the current buffer occupancy. Given state
st, the agent yields a policy π(st), with which the action qt is
made upon downloading the next segment. Then, a new state
st+1 is obtained through the probability p(st+1|st, qt).

Equation (1) provides a basic form of the reward function,
in which α, β and γ are introduced to balance the trade-off
between visual quality, fluctuation and rebuffing events. At
the client sides, different users may have different preferences
regarding these three metrics. Thus, α, β, and γ should vary
across different users. We assume that (αm, βm, γm) are the
values of α, β and γ for userm, encoding the QoE preference
of this user. Accordingly, we formally define the immediate
reward function of user m as follows:

rm(qt−1, π(st), φt) = αm · qt − βm · |qt − qt−1| − γm · φt.
(2)

Following the mechanism of DRL, the accumulated reward
of multiple users from the initial state of s1 can be defined as
follows:

R(π) = E
m∈M

{
tmax−1∑
t=1

ηtrm(qt−1, π(st), φt)

}
. (3)

In (3), η and tmax is the discount factor and the maximum
number of time steps, whileM is the set of all users. Since
optimizing the accumulated reward of one user preference is
single-task DRL, optimizing that of multi-user preferences in
(3) can be seen as multi-task DRL. However, it is intractable
to directly optimize (3) due to the conflict preferences on the
different QoE metrics [16]. In the next section, the MLMP
framework is proposed to tackle this deficiency.

3. MLMP FOR DASH ADAPTATION

Now, we present our MLMP approach for DASH adap-
tation, which is based on a recent multi-task DRL approach:
meta-learning shared hierarchies (MLSH) [20].

3.1. Review of MLSH

As a meta-learning framework for simultaneously master-
ing more than one task, Frans et al. [20] proposed the MLSH
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Fig. 1: DRL model for DASH adaptation at time step t.

approach for simulation robotic control. In MLSH, some of
neural network parameters are updated during the interaction
with a specific task and are re-initialized once switching to an-
other task. The remaining parameters are shared and updated
in the whole distribution of tasks. The former characterizes a
stochastic policy, i.e., the master policy, while the latter char-
acterizes a set of policies, i.e., the sub-policies. Consequently,
by continuously sampling tasks from the distribution of re-
lated tasks, the master policy learns to switch sub-policies,
and the sub-policies learn to generate final actions to execute
in the environment. As a result, sub-policies gradually col-
lect primitives, such as moving to different directions in the
navigation task or selecting the correct goal in the bandit task.

3.2. Framework of MLMP

The overall framework is shown in Figure 2. The input is
the network status at time step t, as depicted in Section 2.2.
They are seen as the state of the DRL, which can be collected
by a state extractor and then fed into the MLMP agent.

Inspired by MLSH [20], our agent consists of a two-level
hierarchical DRL network. To be more specific, the low-level
networks, i.e., the sub-policies (characterized by parameter
ψ), learn to extract the common knowledge of the QoE opti-
mization in DASH. On the other hand, the top-level network,
i.e., the master policy (characterized by parameter θ), learns
to perceive the current user preference. The objective of the
master policy is to sequentially select a proper sub-policy ac-
cording to the changing network condition, which guides our
MLMP agent to the current preference. The selected sub-
policy finally produces the action as the output of our MLMP
approach, given the current state st.

In MLMP, the input state for the master policy is the same
as that for the sub-policies. Meanwhile, the master policy se-
lects the sub-policies at a fixed frequency of N time steps.
In other words, at each N time step, i.e., t = N , 2N , ..., the
master policy is activated, and then, the deep learning net-
work observes the current state st. The deep learning archi-
tecture of the master policy network is shown in Figure 2.
It has two fully connected layers (size: 64) and one layer
of long- and short-term memory (LSTM) cells (size: 64).
Then, the LSTM feature (denoted by ht) is processed by an-
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other fully connected layer (size: 4) to yield the final policy
πθ(st). Here, πθ is modeled by the probability distribution
over the sub-policies (three in this paper) generated by the
softmax function. Given the probability distribution, a sub-
policy index kt ∈ {1, 2, 3} is obtained to select and activate
the corresponding sub-policy. Subsequently, the selected sub-
policy is activated at each time step to take as input the same
state as that for the master policy. The deep learning archi-
tecture for learning the sub-policy is also shown in Figure 2,

Algorithm 1: Algorithm for training MLMP.
1: Initialize parameter ψ for sub-policies.
2: for epoch e = 1 to E do
3: Initialize parameter θ for the master policy.
4: Sample preference m ∈M and initialize the environment state.
5: for iteration w = 1 to Tmaster + Tjoint do
6: Initialize LSTM feature h0 = 0, the current selected sub-policy

index k0 = 0 and the gathered reward rN0 = 0.
7: for time step t = 1 to tmax − 1 do
8: if t can be divided evenly by N then
9: Extract st from the environment.

10: Obtain policy πθ(st) and LSTM feature ht using the master
policy network with {st, ht−N , θ}.

11: Select sub-policy kt according to the ε-greedy policy.
12: Store the experience {st−N , st, ht−N , kt−N , rNt } in the

buffer and reset the gathered reward rNt = 0.
13: end if
14: Extract st from the environment.
15: Obtain policy πψ(st) using the selected sub-policy network

with {st, ψ}.
16: Select qt according to the ε-greedy policy of πψ(st).
17: Calculate st+1 with regard to qt and st.
18: Estimate the instantaneous reward rt through (2) for qt.
19: Update the gathered reward: rNt ← rNt−1 + rt.
20: Store the experience {st, st+1, qt, rt} in the buffer.
21: end for
22: Update parameter θ according to (4) and (5).
23: if w > Tmaster then
24: Update parameter ψ according to (4) and (5).
25: end if
26: end for
27: end for
28: Return: The trained parameter vector: {θ, ψ}.

which includes two fully connected hidden layers (size: 64)
and one fully connected output layer (size: 9) for yielding the
action. Note that the LSTM cells are not included for learning
the sub-policy, since the temporal correlation of the network
throughput has been learned for the master policy. We de-
note the output quality of the selected sub-policy at time step
t as πψ(st), which generates a probability distribution over
all available segments with different quality levels. This is
used to choose and download the next segment with appro-
priate quality for each user in DASH adaptation. Then, an
instantaneous reward rt is returned, based on the preference
of the current user m (i.e., (αm, βm, γm)). Subsequently, the
experience, which refers to {st, qt, st+1, rt}, is stored in the
master-experience buffer and sub-experience buffer. Finally,
both the master policy and sub-policies can be updated by
DRL training, which is discussed in the following section.

3.3. DRL training for MLMP

This section presents how to train and update the DRL
model for selecting segments with different quality in DASH
adaptation. In the multi-user scenario, we randomly sample
a user m fromM at each iteration in succession to estimate
the reward rt. Since the sub-policies aim at learning to obtain
the common knowledge for the QoE optimization, they are
shared for the preferences of different users. In other words,
parameter ψ is optimized across all preferences without any
re-initialization on ψ. Unlike the sub-policies, the master pol-
icy attempts to learn a preference-specific policy, such that
an agent can be guided to be adaptive to the current prefer-
ence. That is, parameter θ is trained for each preference and
re-initialized until a new preference occurs. Moreover, we
collect the reward rt from environment for the master policy
for the subsequent N time steps. Finally, the instantaneous
reward rt and the gathered reward rNt =

∑t+N−1
t′=t rt′ are

used to update parameters ψ and θ, respectively.
Inspired by [20], we divide the update process into two

sub-processes as follows: a guidance process (denoted by
Tmaster) to only update the master policy and a joint process
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Table 1: Performances on the three QoE metrics for our MLMP and D-DASH approaches.
User-1 User-2 User-3

Quality
(SSIM)

Fluctuation
(Delta SSIM)

Rebuffing
(Frequency)

Overall
QoE

Quality
(SSIM)

Fluctuation
(Delta SSIM)

Rebuffing
(Frequency)

Overall
QoE

Quality
(SSIM)

Fluctuation
(Delta SSIM)

Rebuffing
(Frequency)

Overall
QoE

MLMP 0.974 0.004 0.008 0.925 0.969 0.012 0.002 0.900 0.976 0.007 0.009 0.971
D-DASH (MLP) 0.974 0.009 0.005 0.875 0.969 0.008 0.004 0.861 0.974 0.007 0.004 0.970

D-DASH (LSTM) 0.974 0.006 0.006 0.905 0.968 0.004 0.008 0.794 0.973 0.007 0.004 0.969

Ratio 1.00 0.042 0.009 1.00 0.023 0.047 1.00 0.003 0.001

(Tjoint) to update both the master policy and the sub-policies.
To this end, both the instantaneous and gathered reward need
to be optimized as follows:

max
ψ

tmax−1∑
t=1

ηtrt +max
θ

btmax/Nc−1∑
t′=1

ηt
′
rNt′·N . (4)

Finally, based on (3), the overall optimization formulation
can be rewritten as optimization over the distribution of multi-
user preferences as follows:

max
ψ

E
m∈M


tmax−1∑
t=1

ηtrt +max
θ

btmax/Nc−1∑
t′=1

ηt
′
rNt′·N

 . (5)

Consequently, parameters θ and ψ can be learned in MLMP
for optimizing the QoE of multi-user preferences. Algorithm
1 summarizes the procedure of training MLMP in DASH
adaptation.

4. SIMULATION RESULTS

4.1. Simulation Settings

Following [9], we use the extensive trace-based simu-
lation to evaluate the performance in DASH adaptation, in
which the realistic DASH environment is modeled and the
trace is from the realistic video dataset. We set the visual
quality qt (also in terms of SSIM) to be 9 levels and quantify
the network throughput by 8 discrete levels with 50% switch-
ing probability. Refer to [9, 11] for other more details about
DASH simulation and network throughput setting. Note that
we use these same settings for a fair comparison with [11].

In our MLMP model, we set N = 20 time steps as the
time period that the master policy selects a new sub-policy.
For each iteration, the agent interacts with the environment
until tmax (2000 in this paper) is reached for learning the ex-
perience. During the iterative interaction, we use the proximal
policy optimization (PPO) algorithms [21] to update the pa-
rameters θ and ψ, for faster convergence. We follow [20] to
set other hyperparameters of the DRL model.

In our simulation, we implement two versions of D-
DASH [11], i.e., D-DASH with a multi-layer perception net-
work (MLP) and D-DASH with an LSTM network. For more
details about D-DASH (MLP) and D-DASH (LSTM), refer
to [11]. Finally, to evaluate the performance on optimizing
the QoE preferences of multiple users, we randomly sample
one preference at each epoch. We denote the QoE preference
of user m as pm = (αm, βm, γm).

4.2. Performance Evaluation of MLMP

Now, we evaluate the performance of our MLMP ap-
proach in satisfying multi-user preferences regarding the

three QoE metrics, i.e., visual quality, fluctuation and the
frequency of rebuffing events. For a fair comparison, we
train MLMP, D-DASH (MLP) and D-DASH (LSTM) with
the same number of time steps tmax in each episode. Since
(1, 2, 50) represents a general preference in [11], we use three
typical QoE preferences with different bias : p1 = (1, 10, 50)
for user 1 who cares for fluctuation; p2 = (1, 2, 250) for user
2 who is intolerable to rebuffing events; and p3 = (5, 2, 50)
for user 3 who favors the high instantaneous visual quality.

Table 1 tabulates the results of the three QoE metrics and
the overall QoE for our and D-DASH approaches. Specif-
ically, we measure the visual quality by the average SSIM
value of all video segments. The fluctuation is assessed via
the difference between the SSIM values of two successive
segments. Rebuffing events are represented by the frequency
of rebuffing. As shown in Table 1, our MLMP approach per-
forms better than the other two D-DASH approaches in terms
of the overall QoE scores for all three users, especially for
user 1 and user 2. Meanwhile, Table 1 also reports the ratios
of the weighted scores of different metrics to the weighted vi-
sual quality score. We can see from this table that our MLMP
approach performs better in the QoE metric with the higher
ratio. For example, user 1 does not like quality fluctuation (its
ratio is 0.042) and pays less attention to rebuffing events (its
ratio is 0.009). Accordingly, MLMP achieves considerably
better performance in quality fluctuation than D-DASH. The
cost is the loss of worse rebuffing events. This indicates that
our MLMP approach is “good at” satisfying the multi-user
preferences on the three QoE metrics. In addition, among the
three approaches, our MLMP obtains the minimum standard
deviation for all three users in terms of fluctuation, rebuffing
events and quality, which demonstrates the robustness.

5. CONCLUSION

In this paper, we have proposed the MLMP approach for
optimizing the multi-user QoE in DASH adaptation via gen-
erating the actions of selecting the proper video segments.
First, we formulated optimizing the QoE of multi-user prefer-
ences on the three metrics, i.e., visual quality, fluctuation and
rebuffing events, as a multi-task DRL problem. To produce
a policy that is adaptive to the different preferences of mul-
tiple users, we presented the MLMP approach for generating
a policy that is able to select the optimal video segments in
DASH adaptation. Finally, the simulation results implied that
MLMP is capable of meeting the QoE preferences of multiple
users and is superior to other state-of-the-art approaches. The
future work would be to quantify the diverse QoE preferences
of multiple users or assess the QoE more accurately.
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