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ABSTRACT

Due to the limitation of image acquisition, hyperspectral re-
mote sensing imagery is hard to reflect in both high spatial
and spectral resolutions. Super-resolution (SR) is a tech-
nique which can improve the spatial resolution. Inspired by
recent achievements in deep convolutional neural network
(CNN) and generative adversarial network (GAN), a GAN
based framework is proposed for hyperspectral image super-
resolution. In the proposed method, residual learning is used
to obtain a high metrics and spectral fidelity, and a shorter
connection is set between the input layer and output layer.
The gradient features from low-resolution (LR) image to
high-resolution (HR) are utilized as auxiliary information to
assist deep CNN to carry out counter training with discrimi-
nator. Experimental results demonstrate that the proposed SR
algorithm achieves superior performance in spectral fidelity
and spatial resolution compared with baseline methods.

Index Terms— Hyperspectral Imagery, Super-Resolution,
Generative Adversarial Network.

1. INTRODUCTION

Hyperspectral sensor can capture wealthy spectral informa-
tion with a lager number of narrow band wavelengths, which
can potentially enhance many computer vision tasks, such as
classification [1], target detection [2] and so on. However,
due to the technical limitations of imaging equipment, hyper-
spectral images are usually unable to obtain high spatial and
spectral resolution at the same time. The low spatial resolu-
tion results in the mixing of pixels, which is not conducive to
the further promotion of hyperspectral image analysis. There-
fore, it is necessary to develop effective super-resolution (SR)
algorithm to obtain both high spatial and spectral resolution,
which is beneficial to further image interpretation to improve
its performance in the vision tasks.

Several techniques have been developed to obtain both
spatial and spectral resolution in hyperspectral images. In
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[3], multispectral images and traditional spectral unmixing
analysis were considered to reconstruct hyperspectral images.
And the other classical method is Pansharpening, which em-
ploys panchromatic image to provide the high spatial resolu-
tion information [4]. However, such spatial registered auxil-
iary sources are rare or sometimes impossible. Furthermore,
many traditional methods are usually based on sparsity rep-
resentation [5–7], while involving high computational cost.
Thus, it is necessary to develop more efficient SR algorithm
that may require no additional priors.

Recently, deep learning has brought revolutionary achieve-
ments in many applications [8]. Specially, SR for natural
color images can be seen as a image transform task, which
simplifies the SR algorithm framework and achieves a big
success. In [9], deep convolutional neural network (CNN)
has been used to realize an end-to-end learning from low-
resolution (LR) image to high-resolution (HR), and the HR
hyperspectral images can be inferred by LR hyperspectral
images and CNN directly. In [10], authors proposed a new
SRCNN framework by using both the spatial context between
neighboring pixels and the spectral correlation in adjacent
band images. However, although the SRCNN can obtain well
quality-measure metrics, such as PSNR, SSIM or MRAE and
so on, the perceptual quality is hard to get well. Therefore,
SR generative adversarial network (SRGAN) and perceptual
loss have been proposed to solve this problem [11]. Never-
theless, SRGAN can provide a high perceptual quality, but its
PSNR metric is not as good as SRCNN or even worse than the
typical bicubic interpolation. That is alright for natural color
images SR, but for hyperspectral image SR, a lower PSNR
metric usually means a distortion of spectral information.

Inspired by above observation, an novel GAN based
framework is proposed for hyperspectral image SR, named
as modified SRResGAN (MSRResGAN). In the proposed
method, the SRCNN [10] is extended to make it deeper, with
adding residual blocks; the generating network is similar to
the SRGAN [11], but the pixel shuffle layers are removed
and deep network is designed to learn the residual image; the
deeper layer and residual learning can lead to higher metrics
and satisfied spectral fidelity. In terms of the improvement
of spatial perception quality, VGG loss is no longer used as
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perceptual loss to assist network recovery details, because
it may produce some fake details in hyperspectral images.
Instead, a gradient learning network is developed to train
against the discriminator by transmitting the gradient features
to the generating network and helping it recover details. Ex-
periments on visible near infrared (VNIR) and short wave
infrared (SWIR) hyperspectral remote sensing images are
conducted the effectiveness of the proposed MSRResGAN.

2. PROPOSED SUPER-RESOLUTION METHOD

The proposed hyperspectral image SR method consists of
two parts: generating network and discriminating network.
The generating network is responsible for reconstructing a
bicubic-interpolated LR hyperspectral image into a HR one,
and the discriminating network makes a discrimination be-
tween the reconstructed image and the real image.

2.1. Generating Network in Proposed MSRResGAN
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Fig. 1. The proposed MSRResGAN framework including
generating network and gradient learning network.

Let ILR ∈ Rh×w×c and IHR ∈ Rkh×kw×c be the LR and
HR hyperspectral cube, where k represent the upscale fac-
tor, h, w and c represent the size of height, weight and bands
of the image, respectively. The observed image ILR can be
seen as a blurred and downsample version of the IHR [12].
In other words, the high-frequency components of HR im-
age has been smoothed out by the blurr filtering. Thus, it
can suppose that the low-frequency components is similar be-
tween the LR and HR image, the high-frequency components
Ires ∈ Rkh×kw×c is what LR image lacks can be obtained by
subtracting LR images from HR image

Ires = IHR − ILR ↑ k (1)

where ↑ represents the upsampling operation. Therefore, if
the generating network can generate the residual image Ires,
the HR image can be calculated easily.

The generating network is illustrated in Fig. 1. The net-
work takes the bicubic interpolated LR hyperspectral image
as input, but the remote sensing image usually has a large
shape, we input the image into the model patch by patch and
join output together finally. A very deep CNN is employed,
which consists of 21 layers where except the first and the
last are of the same configuration: 64 convolutional kernels
of the size 3× 3× 64, BatchNormalization [13]. Except the
last layer, the activation function in other layres is Relu. The
architecture contains 9 residual blocks and two shorter con-
nections. The residual block enables networks to learn high
level dimension features more effectively and reduce the pos-
sibility of network degradation due to deep layer [14]. The
inner shortcut passes the features to the last feature extracting
layer, which can help low level and high level features fusion.

Particularly, in order to lead generating network to gen-
erate the residual image Ires, outermost shorter connec-
tion reuse the raw input image ILR in output layer. Let
X ∈ Rkh×kw×c and IGen be the interpolated image from
ILR and generated image, we use the mean squared error
(MSE) between actual output IGen and ideal output IHR as
the first cost function to optimize parameters in the generating
network, which is

Lmse =
∥∥IHR − IGen

∥∥2
2

=
∥∥IHR − (X +G (X))

∥∥2
2

= ‖Ires −G (X)‖22

(2)

whereG (X) is active output of the last convolutional layer in
network. Thus, through a shorter connection from the input
layer to the output layer, the MSE cost function will leads
the network to learn to generate the residual image Ires. The
second cost function will be introduced in next subsection.

Furthermore, in the SRGAN [11], although the VGG loss
can help to further improve the quality of perception of the
reconstruction image, but it is not conducive to hyperspectral
image SR. Firstly, VGG has a fixed size of input channels,
which is not conducive to multi-channel hyperspectral image
restoration. Secondly, VGG loss and pixel shuffle upsam-
pling layer sometimes makes the image produce some fake
detail information, which is not suitable for remote sensing
image. Instead, gradient information is employed to assist the
network to further improve SR performance. Compare with
VGG loss, gradient learning focuses on the high-frequency
information, rather than the abstract and high-level features
(e.g. semantic features) which may lead to generate the fake
detail.

The gradient learning network is illustrated in Fig. 1,
where the network is designed to learn a projection between
the LR image gradient and HR image gradient. As shown
in Fig. 2, it can be seen that the learned gradient image is
more clear in its details by comparing the learned residual
image. The last fusion features are shared in gradient learn-
ing network to the generating network, using a set of trainable
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(a)Learned residual image (b)Learned gradient image

Fig. 2. An example of contrast between the learned residual
image and the learned gradient image.

parameters to control the gradient features influence

Fi = F res
i + θi ∗ F grad

i (3)

where Fi is the ith feature map, total 64 feature maps. The
trainable parameters θ can be defined by a set of convolutional
kernels with size of 1× 1× 64.

2.2. Discriminating Network in Proposed MSRResGAN
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Fig. 3. The discriminating network architecture in the pro-
posed MSRResGAN.

Inspired by the [11], the configuration of the discriminat-
ing network is outlined as shown in Fig. 3. The purpose of
the adversarial modeling framework is to solve the adversar-
ial min-max problem

min
G
max
D

EIHR∼ptrain(IHR)

[
logD

(
IHR

)]
+ EX∼pG(X) [log (1−D (G (X) +X))] ,

(4)

where D (X) is output of the discriminating network. It
should be able to accurately determine whether the input
images is the real image or the generated image, while the
generator should be able to generate the real image as much
as possible. Therefore, for paired real HR image IHR and
interpolated image X , discriminating network is trained to
maximize the probability of assigning the correct label both

IHR and IGen, which is the same as minimizing the follow-
ing loss

LD =log
(
1−D

(
IHR

))
+ log (0−D (G (X) +X)) .

(5)

By cheating the discriminating network, generating net is
trained to minimize log (1−D (G (X) +X)), and it is the
second cost function to optimize parameters in the generating
network. The complete loss function for generating network
is

LG = ‖Ires −G (X)‖22
+ λ ∗ log (1−D (G (X) +X)) ,

(6)

where λ is balancing parameter. The two networks are trained
alternately. When the loss LD and LG converge, it can be
seen that there is a equilibrium between the two network and
the IGen is highly similar to real HR image.

3. EXPERIMENTAL ANALYSIS

Two paired of HR/LR hyperspectral datasets with CASI sen-
sor are employed in the following experiments. There are
acquired over the Zhangye city in China while different in
range of spectrum. One is in the range of VNIR and the other
is in the range of SWIR. The HR VNIR and SWIR dataset has
1m spatial resolution, and contains size of 6000× 1000× 48
and 6000× 1000× 87, respectively. And the LR VNIR and
SWIR dataset has 5m spatial resolution.

All the experiments are implemented with Matlab, Python,
Tensorlayer[15] and Tensorflow1. We cut the dataset in two
parts with the same size of 3000× 1000× c, one is used for
training and the other one is used for testing. The training
dataset is divided into 690 patches with size of 64× 64× c
(c means the spectral bands). During training, Adam is used
to optimize the network parameters, and the base learning
rate is 0.001, learning decay is 0.5. Firstly, gradient learning
network is trained, and the λ in LG is set as λ = 0.0001.

The baseline methods for comparison with the proposed
MSRResGAN are Bicubic SR, SRCNN [10], SRGAN [11].
For fair comparison, we also include modified SRCNN with
residual learning (denoted as MSRResNet). Four metrics
are used to quantitatively evaluate the performance of SR
of hyperspectral images: the mean of relative absolute error
(MRAE), the spectral information divergence (SID), the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
PSNR (dB) and SSIM are the widely used to evaluate the per-
formance of reconstruction, the higher the value, the better
the effect. The SID is an information theoretic measure which
assesses similarity making use of the probabilistic discrep-
ancy between the spectra under consideration [16], and the
lower the value, the better the spectral fidelity.

Table 1 provides the performance of comparison between
different algorithms. Meanwhile, the experimental results of

1https://www.tensorflow.org
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all the algorithms for SR of SWIR image are shown in Fig. 4.
As enlarged in the red rectangular, although SRCNN is su-
perior to SRGAN in terms of indicators, SRCNN does not
perform well in details recovery. On the contrary, SRGAN
can restore the details better but it has lower metrics. Mean-
while, it can be found some fake details in the SRGAN re-
constructed image by carefully comparing the ground truth
image. Finally, it can be seen that the MSRResNet has signif-
icant improvement in the metrics. After joining the gradient
learning network and adversarial learning, it can be found that
the proposed MSRResGAN has further obvious improvement
in the perceived quality and spectral fidelity when compared
to MSRResNet. In general, the experiments results confirm
the proposed MSRResGAN obtains the best balance between
perceptual quality and spectral fidelity.

Table 1. Performance Comparison of Super-Resolution on
Real SWIR and VNIR Hyperspectral Image Data.

SWIR Data
metrics MRAE SID PSNR(dB) SSIM
Bicubic 0.1256 31.4386 43.7679 0.9016
SRCNN 0.0812 10.6691 49.4285 0.9872
SRGAN 0.0677 10.8887 48.9640 0.9832

MSRResNet 0.0492 4.6164 51.6164 0.9953
MSRResGAN 0.0372 2.8824 52.6751 0.9959

VNIR Data
metrics MRAE SID PSNR(dB) SSIM
Bicubic 0.1661 27.3275 46.5987 0.9929
SRCNN 0.1388 21.7286 47.3267 0.9952
SRGAN 0.2385 40.5758 44.9196 0.9567

MSRResNet 0.1257 18.3422 47.9100 0.9949
MSRResGAN 0.1205 17.2523 48.1036 0.9949

4. CONCLUSIONS

In this paper, a GAN based framework was proposed for hy-
perspectral remote sensing image super-resolution. The pro-
posed method employed residual learning to learn the differ-
ence between LR image and HR image, which makes it easier
to learn effective features and obtain higher metrics, resulting
in a satisfied spectral fidelity. Furthermore, gradient learning
network was utilized to provide gradient features for generat-
ing network and adversarial learning strategy, which can fur-
ther improve the performance of deep network and perceptual
quality of generated image. Experimental results on two real
hyperspectral datasets demonstrated that the proposed MSR-
ResGAN could obtain superior performance with both spatial
resolution and spectral fidelity when compared with state-of-
the-art methods.

(a) Ground truth HR image

(b) Bicubic

(c) SRCNN

(d) SRGAN

(e) MSRResNet

(f) MSRResGAN

Fig. 4. Illustration of 40-th band in SWIR hyperspectral im-
age on experimental results of different algorithms.
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