
NEURAL NETWORKS SEQUENTIAL TRAINING USING VARIATIONAL GAUSSIAN
PARTICLE FILTER

Mhd Modar Halimeh, Andreas Brendel, and Walter Kellermann

Multimedia Communications and Signal Processing
Friedrich-Alexander-Universität Erlangen-Nürnberg,

Cauerstr. 7, D-91058 Erlangen, Germany.
{mhd.m.halimeh, andreas.brendel, walter.kellermann}@fau.de

ABSTRACT

In this paper, we propose a sequential training algorithm for feed-
forward neural networks based on particle filtering. The proposed
algorithm uses variational learning to tailor a proposal density by
minimizing the variational energy. This density is then incorporated
into the Gaussian particle filter framework. The proposed algorithm
and an extension to it using evolutionary resampling are compared to
training a neural network using a random walk-based particle filter,
an extended Kalman filter, the use of variational learning only, and
the backpropagation algorithm, using a synthetic dataset generated
by a time-varying random process and a real dataset, where the pro-
posed approach resulted in a moderately lower training and testing
errors and a better convergence behavior, rendering the algorithm
attractive for uses such as neural networks pre-training.

1. INTRODUCTION

Given a neural network architecture for a specific task, the main chal-
lenge is to train the network by an efficient training algorithm mak-
ing the best use of the available data. Due to its simplicity and com-
putational efficiency, the backpropagation algorithm (BPA) [1], in-
cluding its extensions, e.g., [2–5], stands out as the most-widely used
supervised training algorithm. However, and despite its widespread
use, several challenges to the BPA have been identified and exten-
sively studied. These challenges include the vulnerability to mak-
ing overconfident decisions, i.e., overfitting, by not considering any
uncertainty, or equivalently confidence, measures in the network pa-
rameters estimates [6]. Moreover, significant effort is required for
the parametrization of the BPA itself before the actual training [7].

A Bayesian approach to train neural networks aims at overcom-
ing some of the challenges faced by the BPA [8] or similar gradi-
ent descent-based algorithms. Many Bayesian approaches for neural
network training have been developed in the last decades, one of
the earliest being the use of the Extended Kalman Filter (EKF) to
train Feedforward Neural Networks (FNN) [9] while in [10], par-
ticle filtering was used to realize a hierarchal Bayesian framework
for FNNs. A Hamilton dynamics-based Markov Chain Monte-Carlo
method was developed in [11]. In [12], a Bayesian framework for
NN was introduced using variational methods. Building upon [12],
the probabilistic BPA was introduced in [7], while [13] introduced
the ’Bayes by BP’, also based on variational learning. In [14], adap-
tive importance sampling is proposed to accelerate the training of a
neural probabilistic language model.

The authors would like to thank the Deutsche Forschungsgemeinschaft
(DFG) for supporting this work (contract number KE 890/4-2).

In this paper, a Bayesian approach for training FNNs sequen-
tially is proposed. This approach is beneficial in environments where
the data should be incorporated into the training while it arrives as
a data stream along the time axis. To this end, we introduce a parti-
cle filter-based algorithm, where variational learning is used to tailor
an importance density, from which we generate particles. This den-
sity is then incorporated into the Gaussian Particle Filter (GPF) [15]
scheme as it will be used to train the FNN. The algorithm is evaluated
using two datasets, a synthetic dataset generated by a time-varying
random process and the real-world ABALONE dataset [16].

This paper is structured as follows: in Section 2 an overview of
particles filters and the unique problem of static parameters estima-
tion for algorithms such as particle filters is given. Section 3 intro-
duces the proposed approach, while in Section 4 the proposed algo-
rithm is verified by two generic experiments. Finally, in Section 5,
conclusions are drawn and an outlook to future work is presented.

2. OVERVIEW

In this Section, we first give a brief overview of particle filtering (see
also [17] and the references therein for recent advances in Monte
Carlo methods). Then, we discuss the problem of estimating static
parameters using particle filters and the challenges that are associ-
ated with this case.

2.1. Particle Filtering

Denoting the input vector measurements, e.g., features, at time in-
stant k by xk, the output measurements, e.g., class association prob-
abilities, by yk, and the latent random variable, i.e., the network’s
weights, by wk = [w1,k, w2,k, ..., wNw,k]

T, where Nw denotes the
number of weights in the network, a state-space model reads

wk = f(wk−1,dk), (1)

yk = g(wk,xk) + vk, (2)

where dk and vk are the process and measurements noise, respec-
tively, and are assumed to be independent, white, Gaussian, and of
zero-mean. g(·) is the function describing the network and thus
is known, while the function f(·) describes the evolution of the
weights vector over time. A Bayesian approach aims at obtaining
the posterior density p(wk|y1:k), which encapsulates the knowledge
about the weights vector w at time instant k, given all the observed
output measurements y until k. The according Bayes filter reads [18]

p(w0:k|y1:k) =
p(yk|wk)p(wk|wk−1)

p(yk|y1:k−1)
p(w0:k−1|y1:k−1). (3)

3002978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

When either function f(·) or g(·) is nonlinear, the Bayes filter
becomes analytically intractable and an approximation is necessary
[19]. A popular approximation technique is particle filtering, where
the posterior density p(w0:k|y1:k) is approximated using a set ofNp
particles {w(i)

0:k}
Np

i=1 and their associated weights {q(i)k }
Np

i=1, accord-
ing to (see [20] for a detailed treatment of particle filters)

p(w0:k|y1:k) ≈
Np∑
i=1

q
(i)
k δ(w0:k −w(i)

0:k). (4)

The particles {w(i)
0:k}

Np

i=1 are drawn from an easily accessible density
known as the importance density, denoted by π(w0:k|y1:k) which
has a strict support over p(w0:k|y1:k) [21].

Since the particles are drawn from a different density, i.e.,
π(w0:k|y1:k) instead of p(w0:k|y1:k), they are weighted by

q
(i)
k =

p(w
(i)
0:k|y1:k)

π(w
(i)
0:k|y1:k)

. (5)

Finally, and in order for (4) to represent a density, the weights are
normalized such that

∑Np
i=1 q

(i)
k = 1 and are resampled using one of

many proposed resampling schemes in the literature [22].
Despite the mild formal assumptions the density π(w0:k|y1:k)

has to fulfill in order to be a valid importance density, the choice
of this density is crucial and a bad choice can lead to poor per-
formance. In [23], it has been shown that the optimal choice
of π(wk|y1:k,w0:k−1), w.r.t. the particles weights’ variance, is
p(wk|wk−1,yk). Unfortunately, this density is often inaccessible,
and a common practical choice is simply to sample from the state
transition density p(wk|wk−1), which is known as prior sampling.

2.2. Static Parameters Problem

The static nature of the parameters of interest, i.e., the time-
invariance of the optimum weights vector in the case of neural net-
works, is problematic and imposes serious challenges to on-line
Bayesian inference [24, 25], e.g., particle filters. Limiting the scope
of the discussion to particle filters, a common way to address this
problem is the use of artificial state transition models with an intu-
itive choice being the random walk. Despite being widely-used, ran-
dom walk is a highly inefficient way of moving particles in the state-
space. This inefficiency becomes more severe when the latent vari-
able is of high dimensionality. As an alternative to the random walk,
one can incorporate other estimation algorithms to update/move the
particles, such as the EKF [10], the Alopex algorithm [26], or the
Unscented Kalman Filter (UKF) [27].

3. THE PROPOSED METHOD

In this Section, our proposed approach for devising an importance
density based on minimizing the variational energy is introduced and
followed by an inference stage to weight and resample the drawn
particles.

3.1. A Variational Learning-based Importance Density

In this paper, we propose the use of variational inference [19] to ad-
dress the static nature of the FNN weights vector wk. The reason
behind this choice is that variational learning enables us to obtain an
importance density that is close to the posterior which, in the context
of particle filtering, is desirable, since such importance densities re-
sult in particles with a low weights’ variance, as it can be seen from
(5).

Since our aim is to devise an importance density π(wk|θk) that
is as close to the true underlying posterior as possible, we mini-
mize the variational free energy F(·) w.r.t. the parameters vector
θk, which completely characterizes π(wk|θk) [12]

F(θk,yk) = −
〈

ln
[
p(yk|wk)p(wk|α)

π(wk|θk)

]〉
wk∼π(wk|θk)

, (6)

where p(wk|α) is the weights prior density, that is characterized by
the parameter α, while 〈g(x)〉x∼p denotes the expectation of g(x)
over the density p. The aim of this paper is to properly incorporate
(6) into a particle filter-based framework that is used afterwards for
FNN training.

Following [12], the variational free energy in (6) can be decom-
posed into two parts, with the first part describing the network loss,
which is related to the weights likelihood

LN (θk,yk) = −〈ln p(yk|wk)〉wk∼π(wk|θk)
, (7)

while the second part describes the complexity loss, which quantifies
the deviation of π(wk|θk) from the prior

LC(θk,yk) = −
〈

ln
[
p(wk|α)
π(wk|θk)

]〉
wk∼π(wk|θk)

. (8)

In the following, we assume that the density π(wk|θk) is normally
distributed, with the parameter set θk consisting of the mean vector
and covariance matrix θk = {wk|k−1,Ck|k−1}. Obviously, Gaus-
sianity of the posterior is a strong assumption and does not match
the mutlimodality associated with densities of high dimensions that
describe highly nonlinear systems. However, this assumption is mo-
tivated by the fact that using multimodal densities would result in an
unrealistically high computational load rendering the training algo-
rithm effectively unusable.

Unlike [12], we do not restrict the covariance matrix to be di-
agonal. This is motivated by the fact that when separable distribu-
tions, i.e., distributions representable as a product of the marginals,
are used, a good approximative importance density given by mini-
mizing the variational free energy is more concentrated than the true
distribution. This has led to criticizing the use of variational learn-
ing in devising importance densities, since compact distributions are
inefficient samplers for particle filters [19].

Next, we introduce the following identity [28]

∇µ〈h(z)〉z∼N = 〈∇zh(z)〉z∼N , (9)

in which N denotes a normal distribution with the mean vector µ.
To minimize the variational free energy, the mean vector wk|k−1 is
updated according to

wk|k−1 = wk−1 − η∇wF(θk,yk), (10)

where η denotes the step size, and wk−1 is the mean vector of
the posterior’s p(w0:k−1|y1:k−1) approximationN (wk−1,Ck−1).
This corresponds to moving the particles in a direction of a lower
variational free energy (6).

In order to evaluate the update term, we employ the identity (9).
Let wj,k denote the j-th element in the weights vector wk, and by
using the Gaussianity assumption, one arrives at

∂LN (θk,yk)

∂wj,k|k−1

=

〈
∂ln p(yk|wk)

∂wj,k

〉
wk∼π(wk|θk)

≈ 1

Np

Np∑
i=1

∂ln p(yk|w
(i)
k)

∂wj,k
, (11)

3003

where the approximation is due to the use of the necessarily finite

number of particles Np and the term ∂ln p(yk|w
(i)
k

)

∂wj,k
can be obtained

using the conventional BPA.
Regarding the second component of (6), i.e., the complexity

loss (8): one can chose many priors, an obvious choice being
p(wk|α) = N (µprior,Σprior), which results in an update term simi-
lar to the L2 regularization [12]. Another possibility is to set the prior
to be uniformly distributed, meaning that all weights are equally
probable. Then the minimization of F(θk,yk) becomes equivalent
to minimizing LN (θk,yk) combined with Gaussian weight noise
(see [12]).

Since estimating Ck|k−1 using variational learning will gener-
ally be computationally costly [28] and constitutes a serious handi-
cap for a neural network training scheme, Ck|k−1 is set to be equal
toCk−1, which is calculated at the previous inference stage.

After obtaining the importance density N (wk|k−1,Ck|k−1),
Np new particles are drawn to replace the old particles, and one
moves to the inference stage.

3.2. Inference Stage

After updating the particles, the proposed scheme continues as a con-
ventional GPF [15], by first evaluating the particles weights

q
(i)
k = p(yk|w

(i)
k), (12)

which are then normalized such that
∑Np

i=1 q
(i)
k = 1.

Afterwards, the posterior’s parameters, i.e, the mean vector wk and
the covariance matrix, are estimated according to

wk =

Np∑
i=1

q
(i)
k w

(i)
k , (13)

Ck =

Np∑
i=1

q
(i)
k (w

(i)
k −wk)(w

(i)
k −wk)

T. (14)

The density N (wk,Ck) is used to draw Np equally weighted par-
ticles [15]. The parameters {wk,Ck} are then propagated to the
next time step. We refer to this approach as the Variational Gaussian
Particle Filter (VGPF) and summarize it in Algorithm 1.

Additionally, an efficient extension is possible by employing the
evolutionary resampling concept [29, 30]. Evolutionary resampling
performs a partial resampling step instead of resampling the entire
particles’ population. The particles which are to be resampled are
determined based on their weights. We refer to this extension as the
Evolutionary VGPF (E-VGPF).

Algorithm 1 The VGPF Pseudocode

Initialize the network withw0 ∼ N (0,C0)
for k = 1 : K do

Update the mean vectorwk|k−1 according to (10).
Propagate the varianceCk|k−1 = Ck−1

Draw Np new particles ∼ N (wk|k−1,Ck|k−1).
Evaluate the particles’ weights {q(i)k }

Np

i=1 (12).
Calculate the mean vectorwk and covariance matrixCk using
(13) and (14), respectively.

end for

4. SIMULATIONS

In this section, the VGPF and E-VGPF are evaluated and examined
using two different datasets, one generated by a synthesized time-

0 20 40 60 80 100
0

5

10

k

|y
k
−
ŷ
k
|

SIR
EKF
VGPF
E-VGPF
VL

Fig. 1: Section 4.1: Average predicted absolute output error.

varying random process while the other, the ABALONE dataset [16],
is a real dataset.

4.1. A Dataset Generated by A Time-Varying Process

In the first experiment, we focus on the efficiency of the proposed
training scheme for a time-varying scenario resorting to the fre-
quently used time-varying random process from [31]

yk = 4sin(x1,k − 2) + 2x22,k + 5cos(0.02k) + 5 + vk. (15)

Here, a total of 100 samples of the output data yk are generated,
where the input vector xk = [x1,k, x2,k]

T is standard normally
distributed, while vk denotes a zero mean, additive white Gaussian
noise with the variance σ2

v = 0.1.
Unlike [31], we approximate the process using a network with a

single hidden layer of 20 sigmoid neurons and a linear output layer.
The excessive number of neurons in the hidden layer, compared to
5 in [31], aims at illustrating the efficiency of the proposed method
in a relatively high-dimensional state-space. Networks trained with
the proposed VPGF and E-VGPF are compared to networks trained
using a conventional Sequential Importance Sampling/Resampling
(SIR) particle filter, and an EKF, both based on the random walk state
model, and to a network trained using Variational Learning (VL)
[12] based on the Gaussianity assumption.

The SIR particle filter is configured with Np = 100 particles,
the random walk was realized by adding a white Gaussian noise with
N (0, σ2

dI) to the weights at each iteration, where I is the identity
matrix and σ2

d = 0.5. The EKF is parametrized with a diagonal pro-
cess noise covariance matrix σ2

dI , with σ2
d = 0.01. The VGPF/E-

VGPF algorithms use Np = 10 particles, an observation noise vari-
ance for all training algorithms is σ̂2

v = 2. The VGPF, E-VGPF and
VL are trained assuming uniform priors and a step size in (10) is set
to η = 0.075. For the VL, 10 samples are used to evaluate the gradi-
ent in (10) and the covariance matrix is assumed to be diagonal and
is obtained as in [12].

To initialize the different networks, an initial weights vectorw0

is drawn from a zero-mean Gaussian distribution with a diagonal
covariance matrix variance σ2

0I with σ2
0 = 100 for the weights con-

necting the input layer to the hidden layer and σ2
0 = 1 for the weights

connecting the hidden layer to the output layer, similar to [31].
Finally, to evaluate the performance of each training algorithm,

we use the prediction Root Mean Square Error (RMSE), mean-
ing that at time instant k, we use the parameters, i.e., the network
weights, obtained by the training algorithm to predict the output
y(k + 1) and compute the RMSE of it. In addition, the Standard
Deviation of the Error (STDE) is also calculated. The experiment
was repeated 1000 times and the resulting average RMSE and STDE
values, in addition to the run times T normalized to the maximum,

3004

SIR EKF VL VGPF E-VGPF
RMSE 4.5 7.2 4.2 3.7 3.6
STDE 4.4 6.3 4.0 3.6 3.5
T 1 0.07 0.24 0.30 0.28

Table 1: Section 4.1 RMSE, STDE and normalized run time.

are given in Table 1. Moreover, to provide an insight into the con-
vergence behavior, the RMSE values are averaged over the 1000 re-
alizations and depicted in Figure 1 for the networks trained by the
different algorithms. It is clear from the results, in both Table 1 and
Figure 1, that networks trained by the VGPF and E-VGPF perform
best, while the advantage of training via the SIR particle filter over
the EKF is consistent with the results reported in [31]. Furthermore,
from the Figure 1, a superior convergence behavior is observed for
both the VGPF and E-VGPF, compared to the EKF. It is also obvious
that the advantage of the evolutionary resampling is minimal in this
scenario.

4.2. ABALONE Dataset

In this experiment, we evaluate the proposed algorithm using the
ABALONE dataset provided in [16]. In this dataset, the aim is to
predict the age of abalone using different physical measurements of
the shell. The measurements include the diameter, length, height,
shucked weights, whole weights, viscera weight, gender, and the
number of rings. The problem can be formulated as a classification
problem or as a regression problem. In this experiment, we opt for
the regression problem. The dataset contains 4178 samples, divided
into 3000 samples for training and 1178 samples for testing.
The trained FNN has a single hidden layer with 25 neurons, each
with a sigmoid activation function, and an output layer with a linear
activation function. The different networks are trained using an SIR
particle filter, an EKF, a conventional BPA, VL, the proposed VGPF,
and E-VGPF.

The SIR particle filter uses a random walk as proposal density
realized by adding a white Gaussian noise with N (0, σ2

dI) with
σ2
d = 0.01 to the particles, while the observation noise variance

is set to be σ2
v = 0.5 and has Np = 100 particles. The EKF is

parametrized with a process noise variance σ2
d = 0.001 and an ob-

servation noise variance σ2
v = 0.005. The VL, VGPF, and E-VGPF

have uniform priors. The VL uses a 100 samples to evaluate the gra-
dient in (10), and evaluates a diagonal covariance matrix as in [12].

The observation noise for the VPGF, and E-VGPF is set similar
to the EKF with σ2

v = 0.005. The VGPF, E-VGPF, VL, and BP are
parametrized with a decaying step size ηk = 0.1

k
and the number

of particles the VGPF, and E-VGPF is Np = 100. Finally, to ini-
tialize the networks, the initial weights are drawn from a Gaussian
distributionN (0, σ2

0I) with σ2
0 = 0.5.

The experiment is repeated 100 times, i.e., the networks are re-
initialized and trained a 100 times. To evaluate each algorithm, the
RMSE and STDE are calculated for the testing data subset and the
average RMSE and STDE, averaged over the 100 repetitions, are
presented in Table 2 in addition to the normalized run time T for
each algorithm.

As it can be seen from the results in Table 2, the VGPF trained
network outperforms both the SIR-trained and the EKF-trained net-
works by a considerable margin, while moderately outperforming
the BPA-trained and the VL-trained networks by a margin of 7%.
While the incorporation of the evoluationary resampling in the E-
VGPF provides an improvement of another 7% relative to the VGPF.

Next, we examine the convergence behavior of the VGPF/E-
VGPF and compare it to the VL and the conventional BPA to de-

0 500 1000 1500 2000 2500 3000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k

Tr
ai

ni
ng

R
M

SE

BPA
VGPF
E-VGPF
VL

Fig. 2: Convergence behavior comparison in Section 4.2.

SIR EKF BPA VL VGPF E-VGPF
RMSE 0.246 0.291 0.127 0.125 0.116 0.109
STDE 0.214 0.27 0.048 0.045 0.027 0.025
T 0.45 0.12 0.06 0.68 1 0.81

Table 2: Section 4.2, test RMSE, STDE and normalized run time.

termine if the advantage w.r.t. the testing RMSE extends to the con-
vergence behavior. The training RMSE is averaged over the 100
trials, smoothed, by averaging over a 10 samples long window for
better visualization, and plotted in Figure 2.

Figure 2 shows that the VGPF, E-VGPF, and VL converge sig-
nificantly faster than the BPA. However, while the BPA and the VL
reach a similar training error at the end of the training phase, the
VGPF, and E-VGPF maintain their advantage, and provide a lower
training error and a more stable behavior. It is also worth noting that,
despite similar training errors, the VL generalizes slightly better than
the BPA, which can be recognized by recalling the difference in the
testing errors in Table 2. However, this desirable behavior of the
VGPF comes at the expense of increased computational complexity,
see Table 2. This computational load is eased in the E-VGPF, where
the resampling is applied partially.

Finally, we observe that for a long sequence of training data, the
particles’ cloud starts to collapse and the posterior variance dimin-
ishes, reflecting path degeneracy and motivating the use of one of the
variance introduction techniques, e.g., Markov Chain Monte Carlo
moves [32] or regularization. This is in line with other observations
reported in the literature regarding Monte Carlo-based approaches
for estimating static parameters, e.g., [33].

5. CONCLUSION

In this paper, we have introduced the VGPF, a sequential training
algorithm for FNNs. The VGPF uses variational learning to devise
an importance density which is later on incorporated into the GPF
scheme. The VGPF and an extension using evolutionary resampling,
i.e., E-VGPF, are evaluated for two different datasets, a time-varying
synthetic dataset and a real dataset. Both algorithms showed a mod-
erately better performance and generalization, in addition to a better
convergence behavior. As a consequence, the proposed algorithms
are good candidates for use cases such as pre-training of FNN. More-
over, the use of evolutionary resampling resulted in the less compu-
tationally intense E-VGPF variant.

Future work will address the path degeneracy observed for long
training sequences, a phenomenon that was observed and reported
for competing approaches in the literature before.

3005

6. REFERENCES

[1] D. Rumelhart et al., Parallel distributed processing: ex-
plorations in the microstructure of cognition, vol. 1, chap-
ter Learning internal representations by error propagation, pp.
318–362, MIT Press, Cambridge, MA, USA, 1986.

[2] P. Diederik et al., “Adam: A method for stochastic optimiza-
tion,” in Int. Conf. Learning Representations (ICLR), May
2015.

[3] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” in arXiv, 1609.04747, 2016.

[4] J. Koushik and H. Hayashi, “Improving stochastic gradient
descent with feedback,” in arXiv, 1611.01505, 2016.

[5] F. Shang et al., “Fast stochastic variance reduced gradient
method with momentum acceleration for machine learning,”
in arXiv, 1703.07948, 2017.

[6] J. Lampinen and A. Vehtari, “Bayesian approach for neural
networks review and case studies,” Neural Networks, vol. 14,
no. 3, pp. 257 – 274, 2001.

[7] J. Hernández-Lobato and R. Adams, “Probabilistic backprop-
agation for scalable learning of Bayesian neural networks,” in
32nd Int. Conf. Machine Learning, 2015, pp. 1861–1869.

[8] D. MacKay, “A practical Bayesian framework for backpropa-
gation networks,” Neural Computation, vol. 4, no. 3, pp. 448–
472, May 1992.

[9] S. Singhal and L. Wu, Advances in neural information process-
ing systems 1, chapter Training multilayer perceptrons with the
extended Kalman algorithm, pp. 133–140, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1989.

[10] N. de Freitas, Bayesian methods for neural networks, Ph.D.
thesis, Trinity College, University of Cambridge, 1999.

[11] R. Neal, Bayesian learning for neural networks, Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[12] A. Graves, “Practical variational inference for neural net-
works,” in Advances in Neural Information Processing Sys-
tems, J. Shawe-Taylor et al., Eds., pp. 2348–2356. Curran As-
sociates, Inc., 2011.

[13] C. Blundell et al., “Weight uncertainty in neural networks,” in
Int. Conf. on Machine Learning, 2015, vol. 37, pp. 1613–1622.

[14] Y. Bengio and J. Senecal, “Adaptive importance sampling to
accelerate training of a neural probabilistic language model,”
IEEE Trans. on Neural Networks, vol. 19, no. 4, pp. 713–722,
April 2008.

[15] J. Kotecha and P. Djuric, “Gaussian particle filtering,” IEEE
Trans. Signal Process., vol. 51, no. 10, pp. 2592–2601, Oct.
2003.

[16] D. Dheeru and E. Karra Taniskidou, “UCI machine learning
repository,” http://archive.ics.uci.edu/ml: re-
trived on 01.02.2018, 2017.

[17] S. Shao et al., “Bayesian model comparison with the
Hyvärinen score: computation and consistency,” arXiv e-
prints, p. arXiv:1711.00136, Oct. 2017.

[18] C. Bishop, Pattern recognition and machine learning,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[19] D. MacKay, Information theory, inference & learning algo-
rithms, Cambridge University Press, New York, USA, 2002.

[20] O. Cappé, S. Godsill, and E. Moulines, “An overview of exist-
ing methods and recent advances in sequential Monte Carlo,”
Proceedings of the IEEE, vol. 95, no. 5, pp. 899–924, May
2007.

[21] G. Casella C. Robert, Monte Carlo statistical methods,
Springer, New York, NY, U.S., 2004.

[22] M. Gerber et al., “Negative association, ordering and
convergence of resampling methods,” arXiv e-prints, p.
arXiv:1707.01845, July 2017.

[23] A. Doucet et al., “On sequential Monte Carlo sampling meth-
ods for Bayesian filtering,” Statistics and Computing, vol. 10,
no. 3, pp. 197–208, July 2000.

[24] N. Kantas et al., “On particle methods for parameter estimation
in state-space models,” Statistical Science, vol. 30, no. 3, pp.
328–351, Aug. 2015.

[25] V. Tadic C. Andrieu, A. Doucet, “On-line parameter estimation
in general state-space models,” in IEEE Conf. on Decision and
Control, Dec. 2005, pp. 332–337.

[26] Z. Chen et al., “Theory of Monte Carlo sampling-based Alopex
algorithms for neural networks,” in IEEE Int. Conf. Acoust.,
Speech, and Signal Process. (ICASSP), May 2004, vol. 5, pp.
01–04.

[27] R. Van Der Merwe et al., “The unscented particle filter,” in Int.
Conf. on Neural Information Process. Sys., Feb. 2001, vol. 13,
pp. 563–569.

[28] M. Opper and C. Archambeau, “The variational Gaussian ap-
proximation revisited,” vol. 21, pp. 786–92, Oct. 2008.

[29] C. Huemmer et al., “The significance-aware EPFES to estimate
a memoryless preprocessor for nonlinear acoustic echo cancel-
lation,” in IEEE Global Conf. on Signal and Inform. Process.
(GlobalSIP), Dec. 2014, pp. 557–561.

[30] M. Halimeh et al., “Hybrid particle filtering based on an elitist
resampling scheme,” in Sensor Array and Multichannel Signal
Process. Workshop (SAM), Jul 2018.

[31] N. de Freitas et al., “Sequential Monte Carlo methods to train
neural network models,” Neural Computation, vol. 12, no. 4,
pp. 955–993, Apr. 2000.

[32] W. Gilks and C. Berzuini, “Following a moving target Monte
Carlo inference for dynamic Bayesian models,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology),
vol. 63, no. 1, pp. 127–146, Jan. 2002.

[33] C. Andrieu et al., “Sequential MCMC for Bayesian model
selection,” in IEEE Signal Process. Workshop on Higher-Order
Statistics, June 1999, pp. 130–134.

3006

		2019-03-18T10:51:42-0500
	Preflight Ticket Signature

