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ABSTRACT

Machine learning, and more specifically deep learning, have
shown remarkable performance in sensing, communications,
and inference. In this paper, we consider the application of
the deep unfolding technique in the problem of signal recon-
struction from its one-bit noisy measurements. Namely, we
propose a model-based machine learning method and unfold
the iterations of an inference optimization algorithm into the
layers of a deep neural network for one-bit signal recovery.
The resulting network, which we refer to as DeepRec, can
efficiently handle the recovery of high-dimensional signals
from acquired one-bit noisy measurements. The proposed
method results in an improvement in accuracy and compu-
tational efficiency with respect to the original framework as
shown through numerical analysis.

Index Terms— Deep learning, deep unfolding, MIMO
communications, big data, machine learning, neural network,
maximum likelihood, one-bit quantization

1. INTRODUCTION

Quantization of signals of interest is an integral part of all
modern digital signal processing applications such as sensing,
communication, and inference. In an ideal hardware imple-
mentation of a quantization system, a high-resolution analog-
to-digital converter (ADC) with b-bit resolution and sampling
frequency of fs samples the original analog signal and maps
the obtained samples into a discrete state space of size 2bfs.
Generally, a large number of bits is required to obtain an accu-
rate digital representation of the analog signal. In such a case,
the quantization process has negligible impact on the perfor-
mance of algorithms which were typically developed on the
assumptions of infinite precision samples, and thus, the high-
resolution (in terms of amplitude) quantization process can be
directly modeled as an additive noise source. However, a cru-
cial obstacle with modern ADCs is that their power consump-
tion, manufacturing cost, and chip area grows exponentially
with their resolution b [1–3].
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The required high sampling data rate of ADCs used in
next generataion communications systems is another obstacle
that must be tackled in such applications. For instance, the
promising millimeter wave (mmWave) multiple-input mul-
tiple output (MIMO) communication technology requires a
very large bandwidth, and the corresponding sampling rate of
the ADCs must increase accordingly. However, manufactur-
ing ADCs with high-resolution (e.g., more than 8 bits) and
high sampling rate are extremely costly and may not be avail-
able. Moreover, in other applications such as spectral sensing
and cognitive radio, which require extremely high sampling
rates, the cumulative cost and power consumption of using
high-resolution and extremely fast ADCs are typically pro-
hibitive and impractical. Hence, when signals across a wide
frequency band are of interest, a fundamental trade-off be-
tween sampling rate, amplitude quantization precision, cost,
and power consumption is encountered. An immediate solu-
tion to such challenges is to use low-resolution, and specif-
ically one-bit, ADCs. The use of one-bit signed measure-
ments, and more specifically one-bit ADCs, allows for an
extremely high sampling rate at a low cost and low power
consumption. From a sampling viewpoint, the most extreme
case of quantization is to use only one bit per sample. More
precisely, one-bit sampling can be seen as a process through
which we repeatedly compare the amplitude of a signal (at
each sample) to some reference threshold level and use only
one bit to convey whether the signal amplitude resides above
or below that threshold. Due to its appealing sampling proper-
ties, the problem of recovering a signal from its one-bit mea-
surements has attracted a great deal of interest over the past
few years [4–8]. Therefore, it is vital to develop algorithms
that can deal with low-resolution samples for different appli-
cations.

The fields of machine learning (ML), and more particu-
larly deep learning, are impacting various fields of engineer-
ing and have recently attracted a great deal of attention in
tackling long-standing signal processing problems. The ad-
vent of low-cost specialized powerful computing resources
(e.g., GPUs, and more recently TPUs) and the continually
increasing amount of massive data generated by the human
population and machines, in conjunction with the new opti-
mization and learning methods, have paved the way for deep
neural networks (DNNs) and machine learning-based models
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to prove their effectiveness in many engineering areas (see,
e.g., [9–11] and the references therein).

The main advantage of the deep learning-based model
herein is that it employs several non-linear transformations
to obtain an abstract representation of the underlying data.
Model-based machine learning frameworks (e.g., proba-
bilistic graphical models) incorporate prior knowledge of
the system parameters into the inference process. A re-
cent promising approach in bridging the gap between deep
learning-based and model-based methods is the paradigm of
deep unfolding [12]. Particularly, iterations of a conventional
recursive algorithm, such as fast iterative soft thresholding
algorithm (FISTA), projected gradient descent, and approx-
imate message passing (AMP), can be used as a baseline to
design the architecture of a deep network with trainable pa-
rameters specifically customized to the problem of interest.
Such a methodology results in an improvement in accuracy,
and computational efficiency of the original framework. The
deep unfolding method has already shown remarkable per-
formance improvement in a wide range of applications such
as MIMO communications [13, 14], multi-channel source
separation [15], and sparse inverse problems [16, 17].

In this paper, we consider the general problem of high-
dimensional signal recovery from random one-bit measure-
ments. Specifically, we propose an efficient signal recovery
framework based on the deep unfolding technique that has the
advantage of low-complexity and near-optimal performance
compared to traditional methods. Our proposed inference
framework has a wide range of applications in the areas of
wireless communications, detection and estimation, and sens-
ing.

2. PROBLEM FORMULATION

We begin by considering a general linear signal acquisition
and one-bit quantization model with time-varying thresholds,
described as follows:

Signal Model: y = Hx+ n, (1)

Quantization Model: r , sign(y − τ ), (2)

where τ = [τ1, . . . , τM ]T denotes the vector of one-bit
quantization thresholds, y ∈ RM denotes the received sig-
nal prior to quantization, H ∈ RM×N denotes the sensing
matrix, x ∈ RN denotes the multidimensional unknown
vector to be recovered, and n ∼ N (0,C) denotes the
zero-mean Gaussian noise with a known covariance ma-
trix C = Diag(σ2

1 , . . . , σ
2
M ). Furthermore, sign(·) denotes

the signum function applied element-wise on the vector argu-
ment.

The above model covers a wide range of applications. For
instance, the described model (1)-(2) can be used in MIMO
communication systems in which H is the channel matrix, x
is the signal sent by the transmitter, n is the additive Gaus-
sian noise in the system, and the base station is equipped with

one-bit ADCs, where the goal is to recover the transmitted
symbols from r.

2.1. Maximum Likelihood Estimator Derivation

Given the knowledge of the sensing matrix H , noise covari-
anceC, and the corresponding quantization thresholds τ , our
goal is to recover the original (likely high-dimensional) sig-
nal x from the one-bit random measurements r. In such a
scenario, each binary observation {ri}Ni=1 follows a Bernoulli
distribution with parameter pi, given by:

pi = Prob{hTi x+ ni − τi > 0} = Q

(
τi − hTi x

σi

)
, (3)

where Q(x) = 1 − Φ(x) with Φ(x) representing the cumu-
lative distribution function (cdf) of a standard Gaussian dis-
tribution and hTi denotes the i-th row of the matrix H . In
particular, the probability mass function (pmf) of each binary
observation can be compactly expressed as:

p(ri) = Q

(
ri
σi

(
τi − hTi x

))
, (4)

where ri ∈ {−1,+1}. Therefore, the log-likelihood of the
quantized observations r given the unknown vector x can be
expressed as:

L(x) = p(r|x) = log
{∏N

i=1
Q

(
ri
σi

(
τi − hTi x

))}
(5)

=

N∑
i=1

log
{
Q

(
ri
σi

(
τi − hTi x

))}
, (6)

where log {·} denotes the natural logarithm. As a result, the
maximum likelihood (ML) estimation of x can be obtained as

x̂ = argmax
x

L(x). (7)

Observe that the maximum likelihood estimator x̂ has to sat-
isfy the following condition:

∇xL(x) = 0, (8)

where the gradient of the log-likelihood function with respect
to the unknown vector x can be derived as follows:

∇xL(x) =

N∑
i=1

− ri
σi

Q′
(
ri
σi

(
τi − hTi x

))
Q
(
ri
σi

(
τi − hTi x

))
hi, (9)

where Q′(x) = − 1√
2π

exp
(
−x2/2

)
. It can be observed from

(9) that the gradient of the log-likelihood function is a lin-
ear combination of the rows of the sensing matrix H . Let
η : RM 7→ RM be a non-linear function defined as follows:

η(x) ,
Q′(x)

Q(x)
, (10)
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where the functions Q(·), Q′(·), and the division, are applied
element-wise on the vector argument x. In addition, let Ω =
Diag(r1, . . . , rM ) be a diagonal matrix containing the one-bit
observations and Ω̃ = ΩC−

1
2 be the semi-whitened version

of the one-bit matrix Ω. Then, the gradient of the likelihood
function in (9) can be compactly written as follows:

∇xL(x) = −HT Ω̃η
(
Ω̃(τ −Hx)

)
. (11)

Recall that the ML estimator x̂ must satisfy the condition
given in (8), i.e.,

∇xL(x) = −HT Ω̃η
(
Ω̃(τ −Hx)

)
= 0. (12)

Other than certain low-dimensional cases, finding a closed-
form expression for x̂ that satisfies (12) is a difficult task [18–
20]. Therefore, we resort to iterative methods in order to find
the ML estimate, i.e., to solve (7).

In this paper, the well-known gradient ascent method is
employed to iteratively solve (7). Namely, given an initial
point x(0), the update equation at each iteration is given by:

x(k+1) = x(k) + δ(k)∇xL(x) (13)

= x(k) − δ(k)HT Ω̃η
(
Ω̃(τ −Hx(k))

)
, (14)

where δ(k) is the step size at the k-th iteration. The obtained
maximum likelihood estimator derived from the signal model,
and the corresponding optimization steps, can be unfolded
into a multi-layer deep neural network, which improves the
accuracy and computational effciency of the original frame-
work.

In the next section, we unfold the above iterations into
the layers of a deep neural network where each layer denotes
one iteration of the above optimization method. Interestingly,
we fix the complexity budget of the inference framework (via
fixing the number of layers), and apply the gradient descent
method to yield the most accurate estimation of the parameter
in at most K iterations.

3. SIGNAL RECOVERY VIA DEEP UNFOLDING

Conventionally, first-order optimization methods, such as gra-
dient descent algorithms, have slow convergence rate, and
thus take a large number of iterations to converge to a so-
lution. Herein, we are interested in finding a good solution
under the condition that the complexity of the inference al-
gorithm is fixed. This is important since, via unfolding the
optimization algorithm, we fix the computational complexity
of the inference model (a DNN with K layers in such a case)
and optimize the parameters of the network to find the best
possible estimator with a fixed-complexity constraint. Below,
we introduce DeepRec, our deep learning based signal recov-
ery framework which is designed based on the iterations of

the form (14), to find the maximum likelihood estimation of
the unknown parameter.
—The DeepRec Architecture. The construction of DeepRec
involves the unfolding of k = 1, . . . ,K, iterations each of
which are of the form (14), as the layers of a deep neural net-
work. Particularly, each step of the gradient descent method
depends on the previous signal estimate x(k), the step size
δ(k), the scaled one-bit matrix Ω̃, the sensing matrix H , and
the threshold vector τ . In addition, the form of the gradient
vector (11) makes it convenient and insightful to unfold the it-
erations onto the layers of a DNN in that each iteration of the
gradient descent method is a linear combination of the sys-
tem paramteres followed by a non-linearity. The k-th layer
of DeepRec can be characterized via the following operations
and variables:

z(k) = W 1kΩ̃τ −W 2kΩ̃Hx
(k) + b1k, (15)

p(k) = η
(
z(k)

)
, (16)

t(k) = HT Ω̃p(k), (17)

x(k+1) = f

(
W 3k

[
x(k)

t(k)

]
+ b2k

)
, (18)

where x(1) = 0, f(·) denotes a non-linear activation func-
tion where in this work we consider f(x) , ReLU(x) =
max{0, x}, and the goal is to optimize the DNN parameters,
described as follows:

Ξ = {W 1k,W 2k,W 3k, b1k, b2k}Kk=1. (19)

The proposed DeepRec architecture with L layers can
be interpreted as a class of estimator functions ΨΞ(r,H, τ )
parametrized by Ξ to estimate the unknown parameter x
given the system parameters. In order to find the best esti-
mator function ΨΞ(r,H, τ ) associated with our problem,
we conduct a learning process via minimizing a loss function
R(x; ΨΞ(r,H, τ )), i.e.,

min
Ξ

R(x; ΨΞ(r,H, τ )). (20)

In this work, we employ the following least squares (LS) loss
function:

R (x; ΨΞ(r,H, τ )) = ||x−ΨΞ(r,H, τ )||22, (21)

where during the training phase, we synthetically generate the
system parameters Θ = {x, r,H, τ} according to their sta-
tistical model.

4. NUMERICAL RESULTS

We now demonstrate the performance of the proposed Deep-
Rec framework for the problem of one-bit signal recovery.
The proposed framework was implemented using the Tensor-
Flow library [21], with the ADAM stochastic optimizer [22]
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Fig. 1. The performance of DeepRec: (a) demonstrates the NMSE performance of the DeepRec network for different numbers
of layers K. (b) shows the performance of the proposed DeepRec architecture and the original gradient descent method of (14)
in terms of averaged NMSE for different numbers of one-bit samples M . (c) shows a comparison of the computational cost
between the gradient descent method and the proposed DeepRec network for different numbers of one-bit samples M .

and an exponential decaying step size. In the learning process
of the network, we employed the batch training method with
a batch size of 500 at each epoch and we performed the train-
ing for 2000 epochs. In all of the simulations, we assumed
N = 3, i.e., x ∈ R3, and we used the normalized mean
square error (NMSE) defined asNMSE = ||x−x̂||22/||x||22,
for the performance metric.

The training was performed based on the data gener-
ated via the following model. Each element of the vec-
tor x is assumed to be i.i.d and uniformly distributed, i.e.,
x ∼ U(δxl , δ

x
u ). The sensing matrix is assumed to be

fixed and follow a Normal distribution, where we consider
H ∼ N (0, I). The quantization thresholds were also gen-
erated from a uniform distribution, τ ∼ U(δτl , δ

τ
u ), where

the lower and upper bound of the distribution is chosen in
a fashion that at least covers the domain of x. The noise is
assumed to be independent from one sample to another and
follows a Normal distribution, where the variance of each
corresponding noise element is different, e.g., the noise co-
variance C = Diag(σ2

1 , . . . , σ
2
M ), with σ2

i ∼ U(δn1 , δ
n
M ).

Note that we trained the network over a wide range of noise
powers in order to make the DeepRec network more robust to
noise.

Fig. 1(a) demonstrates the performance of the DeepRec
network for different numbers of layersK. It can be observed
that the averaged NMSE decreases dramatically as the num-
ber of layers increases. Such a result is also expected as each
layer corresponds to one iteration of originial optimization al-
gorithm. Thus, as the number of layers increases, the output
of the network will converge to a better estimation as well.

Fig. 1(b) demonstrates the performance of the proposed
DeepRec architecture and the original Gradient Descent
method of (14) in terms of averaged NMSE for different
numbers of one-bit samples M . In this simulation, we imple-
mented the DeepRec network with K = 90 layers. It can be

clearly seen from Fig. 1(b) that the proposed deep recovery
architecture (DeepRec) significantly outperforms the original
optimization method in terms of accuracy and provides a con-
siderably better estimation than that of the gradient descent
method for the same number of iterations/layers. As a fair
comparison, we also assumed a fixed-step size of δ = 0.01
for the gradient descent method.

Fig. 1(c) shows a comparison of the computational cost
(machine runtime) between the gradient descent method and
the proposed DeepRec network for different numbers of one-
bit samples M . It can be seen that our proposed method
(DeepRec) has a significantly lower computational cost than
that of the original optimization algorithm for our problem.
Hence, making the DeepRec a good candidate for real-time
signal processing or big data applications (the results were
obtained on a standard PC with a quad-core 2.30GHz CPU
and 4 GB memory).

5. CONCLUSION

We have considered the application of model-based machine
learning, and specifically the deep unfolding technique, in the
problem of recovering a high-dimensional signal from its one-
bit quantized noisy measurements via random thresholding.
We proposed a novel deep architecture, which we refer to
as DeepRec, that was able to accurately perform the task of
one-bit signal recovery. Our numerical results show that the
proposed DeepRec network significantly improves the perfor-
mance of traditional optimization methods both in terms of
accuracy and efficiency.
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