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ABSTRACT

Recovering a sparse signal from a noisy linear measurement is an im-
portant problem in signal processing. Typically, one employs greedy
pursuit techniques such as OMP, CoSaMP to solve an `0 regular-
ization problem. For large-scale problems, iterative shrinkage tech-
niques such as ISTA, FISTA, AMP-`1 have been introduced. The
underlying formulation in the iterative algorithms is a LASSO prob-
lem with an `1-penalty. It is known in the literature that an `1-penalty
in LASSO suffers from underestimation of large signal amplitudes.
Also, the iterative shrinkage-based approaches such as ISTA typi-
cally have only one free parameter to trade-off between noise vari-
ance and sparsity. We consider a minimax-concave penalty-based
formulation, which offers an unbiased estimate of the sparse sig-
nal. The resulting iterative firm-thresholding algorithm is restruc-
tured as a DNN architecture called FirmNet. The proposed network,
FirmNet, has two interpretable shrinkage function parameters – one
that controls the noise variance, and the other that allows for explicit
sparsity control. We compare the network with a broader network ar-
chitecture of Learned-ISTA (LISTA), and show that it outperforms in
terms of the probability-of-error-in-support (PES) – a strong support
recovery metric, by at least three-fold. We also observe an improve-
ment of 2 to 4 dB in reconstruction SNR compared with LISTA.

Index Terms— Sparse coding, iterative algorithms, proximal
operators, deep neural networks, deep unfolding.

1. INTRODUCTION

Sparse coding is the problem of recovering a sparse vector x? ∈ Rn

from a compressed (m < n) noisy linear measurement vector y ∈
Rm. The linear measurement process is given by y = Dx? + ε,
where ε is additive i.i.d. Gaussian noise. An estimate of x? requires
solving an `0 problem. Greedy pursuit techniques [1–4] such as
OMP [5, 6], CoSaMP [7], Subspace Pursuit [8] are used to estimate
x? for a given sparsity level. Another family of techniques involves
a convex relaxation to the `0 penalty, namely, the `1 norm resulting
in the LASSO optimization problem:

arg min
x

1

2
‖y −Dx‖22 + λ‖x‖1. (1)

When the problem dimensionality is small, an interior-point
algorithm [9] is employed. For large-scale problems, one has to
rely on iterative shrinkage algorithms, such as Iterative Shrink-
age/Thresholding Algorithm (ISTA) [10], a faster version of ISTA
(FISTA) [11] that incorporates the momentum factor. Recently,
Donoho et al. proposed the Approximate Message Passing (AMP)
[12, 13] algorithm to solve the problem in (1) as a special case.

† Equal contribution.
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Fig. 1: [color online ] This plot highlights the robustness of Firm-
Net to LISTA in Probability of Error in Support (PES) [15] metric for
over 1000 test realizations. The LISTA estimate has a larger support
than intended as indicated by a high PES in contrast to much lower
PES scores of FirmNet. Lower the PES, superior the performance.

The AMP algorithm incorporates a term proportional to the past
residuals called an Onsager correction into one of the update steps
of ISTA. Addition of the correction term decouples the AMP it-
erations such that the input to the shrinkage is an additive white
Gaussian noise (AWGN) corrupted version of the true signal x?

with a known variance [14]. A variant of AMP for solving the
LASSO problem is called AMP-`1 [13]. To counter the fragility of
the AMP-`1 algorithm to the matrix D, Rangan et al. introduced
Vector AMP (VAMP) [14]. The VAMP algorithm while keeping
the desirable properties of AMP, such as fewer iterations for con-
vergence and shrinkage inputs that follow the AWGN model (as
described above) over a larger classes of matrices, which are large
and right-rotationally invariant [14]. In conclusion, the above three
main classes of algorithms (ISTA, AMP, and VAMP) that are aimed
at solving (1) rely on shrinkage functions with a free parameter and
a fixed linear transformation.

LeCun et al. restructured the way sparse coding problems are
solved by proposing a deep neural network (DNN)-like architecture,
which is learnable as well as interpretable [16]. An iterative soft-
thresholding algorithm is unfolded into a network to learn the affine
transformation matrices and MSE-optimal shrinkage functions. The
update steps in the ISTA formulation are cascaded over several it-
erations to form a layered network called learned ISTA (LISTA)
[16]. This approach enhances the robustness over ISTA by achieving
lower normalized MSE (NMSE). Recently, several existing iterative
algorithms got revamped into a learnable network framework and
have offered superior performance over their iterative counterparts.
The message passing algorithms (AMP and VAMP) got revamped
into a Learnable AMP (LAMP) and a Learnable VAMP (LVAMP)
DNN architectures [14]. The architecture of LAMP is similar to that
of LISTA except the additional “bypass” paths incorporating the On-
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sager correction. Ghanem et al. proposed ISTA-Net and ISTA-Net+

by taking an approach different from LISTA by learning the param-
eters, such as nonlinear transforms, shrinkage thresholds, step-sizes,
etc., end-to-end in a joint formulation [17]. Mahapatra et al. mod-
eled the nonlinear transformation as a linear expansion of thresholds
(LET) [18], and restructured ISTA and FISTA into corresponding
DNN architectures LETnet and fLETnet, respectively [19]. These
networks have shown an improvement of 3 to 4 dB in terms of re-
construction SNR.

The approaches in the past decade have focused on solving an
`1 problem [1, 2, 4] in (1) employing either iterative algorithms [10,
12, 14, 20–22] or DNN-like architectures [14, 16, 17, 19, 23, 24]. It
is known in the literature that an `1 penalty suffers from underes-
timation of large amplitude values inducing a bias in the estimated
sparse code, thereby fundamentally limiting its performance [25].
Also, except for signals with a high SNR and low sparsity factor ρ,
an `1 penalty tends to shrink signal amplitudes and has a larger sup-
port than intended. This phenomenon can be observed in Figure 1a,
where a higher PES score (defined in (14)) indicates a larger support
of an estimate. We show that the proposed network architecture,
FirmNet, has a lower PES indicating accurate estimation of the sup-
port. We propose a new iterative algorithm and its equivalent deep
neural network (DNN) architecture, which ameliorates the underes-
timation in large amplitude values and promotes super-sparsity [26]
compared with other iterative `1-based algorithms.

Of particular relevance to the current work is the contribution
of Voronin and Woerdeman [21], who proposed an iterative varied
thresholding algorithm (IVTA), in order to counter the effects of
underestimation of large amplitudes while maintaining the desired
sparsity. To generalize the two-step procedure in [27] consisting
two soft-thresholding operations, they proposed a direct approach
utilizing firm-thresholding operators. Since the firm-thresholding
operator leads to a non-convex penalty making the overall cost non-
convex, the IVTA algorithm starts with soft-thresholding steps, and
gradually switches to firm-thresholding as the sparsity increases
to recover the underestimated amplitudes. This heuristic approach
though shown to be faster and accurate for some denoising appli-
cations is not robust when the estimated sparsity level required to
initiate the iterations is not accurate.

A class of non-convex penalties proposed in [25] generalizes `1
norm while maintaining the convexity of the least-squares cost func-
tion to be minimized. The proposed generalized minimax-concave
(MC) penalty ψB(x) is the difference between an `1 norm and a
generalized Huber function SB(x). Selesnick provides a convexity
condition (in (47) of [25]) that the scaling matrix B should satisfy.
The MC penalty bridges the gap between an `1 norm and an `p norm
(p < 1). The advantage of the MC penalty over `1 is that it provides
a more accurate estimation of high-amplitudes and promotes higher
level of sparsity in the estimate. In the following section, inspired by
Selesnick’s recent contribution, we formulate a locally convex cost
with a non-convex MC penalty ensuring that the condition in Propo-
sition 3 of [25], i.e., a positive curvature of the cost, is satisfied.

An illustration that compares LISTA [16], the first generation
of interpretable DNNs, and the proposed DNN architecture, Firm-
Net, using a strong support recovery metric called the probability
of error in support (PES) [15] is shown in Figure 1. The proposed
DNN architecture, FirmNet, is shown to outperform LISTA by at
least three-fold in estimating the correct support. In this paper, we
consider the reformulation of LASSO to promote super-sparsity in
the solution. To this extent, we consider the use of minimax-concave
(MC) penalty replacing the `1 norm [25]. The MC penalty weighs
amplitudes above a threshold with a fixed weight, thereby eliminat-

ing the underestimation issue and promotes super-sparsity by virtue
of non-convexity under the threshold value. The main contributions
of this paper are as follows:

1. An iterative firm-thresholding algorithm (IFTA) is proposed
to solve the reformulated MC penalty-based problem. We
employ the proximal operator for the non-convex penalty,
which has an additional free parameter (for sparsity control)
compared to the shrinkage parameter in ISTA. This propo-
sition overcomes the inherent trade-off between the support
recovery and amplitude underestimation.

2. Finally, we propose an IFTA-inspired DNN architecture
called FirmNet to learn the Huber-optimal shrinkage param-
eters and affine transformations. We learn two shrinkage
parameters, one that controls the noise variance and the other
that controls sparsity in the solution. The Huber loss is pre-
ferred to mean-squared error (MSE) to impart robustness to
outliers.

This paper is organized as follows. We first reformulate the
LASSO problem with a sparsity-promoting non-convex penalty [28].
We then present in Section 2.1 the iterative firm-thresholding algo-
rithm based on the proximal operator derived from the non-convex
penalty [29, 30]. Further, in Section 2.2, we restructure the iterative
algorithm and unfold it into a DNN-like architecture. In Section 3,
we show the efficacy of the proposed FirmNet, and compare it to
a broader network architecture of LISTA. We would like to empha-
size that comparison with LISTA is sufficient, since the underlying
formulation of DNN-like architectures is a LASSO formulation.

2. PROBLEM FORMULATION

Consider the signal model y = Dx?+ε,where y ∈ Rm is the noisy
measurement, D ∈ Rm×n is an overcomplete (m < n) dictionary,
x? ∈ Rn is a sparse vector and ε ∈ Rm is the additive measurement
noise. To overcome the bias introduced by the `1 penalty in LASSO,
we introduce the minimax-concave (MC) penalty [25] as a sparsity-
promoting regularizer:

arg min
x
‖y −Dx‖22︸ ︷︷ ︸

f(x)

+gγ(x;λ), (2)

where

gγ(xi;λ) =


λ

(
|xi| −

x2i
2γλ

)
, |xi| ≤ γλ,

γλ2

2
, |xi| ≥ λγ,

(3)

for all i ∈ [[1, n]] and

gγ(x;λ) =

n∑
i=1

gγ(xi;λ).

In the next section, we solve the optimization problem in (2) us-
ing the Majorization-Minimization (MM) [31] approach. We refer to
the resulting algorithm as an Iterative Firm Thresholding Algorithm
(IFTA).

2.1. Iterative Firm Thresholding Algorithm (IFTA)

We now describe an iterative algorithm for solving (2). The
quadratic term f(x) in (2) is expanded using a first-order approxi-
mation at point xk as given below:

2983



X

W

By x1

Fig. 2: An IFTA iteration, which resembles a layer in DNN.
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Fig. 3: An illustration of a 3-layered FirmNet. The matrices U , V ,
and the nonlinearities gγ(x;λ) are learned.

fk(x) ≈ f(xk) + (x− xk)T∇f(xk). (4)

The update xk+1 using the MM approach is given as

xk+1 = arg min
x
fk(x) +

1

2η
‖x− xk‖22 + gγ(x;λ), (5)

which can be expressed equivalently as

xk+1 = arg min
x

1

2η

∥∥∥x− (xk − η∇f(xk))
∥∥∥2
2
+ gγ(x;λ). (6)

The proximal operator corresponding to the penalty gγ( · ;λ) is

F gγ (u;λ) = arg min
x

1

2
‖x− u‖22 + gγ(x;λ). (7)

Since gγ(x;λ) is separable in x, the resultant firm-shrinkage opera-
tor F gγ (u;λ) is given as

F gγ (ui;λ) =


0, |ui| ≤ λ,
γ

γ − 1
(|ui| − λ) sign(ui), λ < |ui| ≤ γλ,

ui, |ui| > γλ,
(8)

where ui = [u]i , ∀i ∈ [[1, n]]. Solving (6) is equivalent to

xk+1
i = arg min

xi

1

2η

(
xi − uki

)2
+ gγ(xi;λ), (9)

where uki =
[
uk
]
i
, ∀i ∈ [[1, n]] and uk = xk − η∇f(xk).

The optimization problem in (7) is convex for γ > 1 [28].
The IFTA algorithm for the optimization problem in (9) with firm-
thresholding operator is described in Algorithm 1. An update step
of IFTA algorithm at (k + 1)th iteration is xk+1 = F gγ (Wxk +

By ;λη), whereW = (I−ηDTD) andB = ηDT. Here, xk+1 can
also be interpreted as applying an affine transformation on {xk,y},
followed by a nonlinearity, which is the firm-thresholding operator
parameterized by γ, λ. Each iteration of IFTA can be seen as a layer
in a neural network as shown in Figure 2. In the next section, we
unfold this iterative firm-thresholding algorithm (IFTA) into a DNN-
like architecture (FirmNet), and learn the network parameters from
training data.

2.2. FirmNet: IFTA-Inspired DNN

As seen in the previous section, an iteration of IFTA resembles
one layer in a DNN architecture. We further extend the idea to
learn the network parameters {U, V, λ, γ} instead of fixed weights
{B,W, λ, γ}.

Algorithm 1: Iterative Firm Thresholding Algorithm (IFTA).

Data: y, D, η = 1/‖D‖22, kmax

Initialization: x0, k = 0
while k ≤ kmax do

zk+1 = xk − ηgk where gk = −DT(y −Dxk)
xk+1 = F gγ (z

k+1;λη)
k = k + 1

end
Result: x̂0 ← xk

We propose a DNN architecture called FirmNet with a fixed
depth and each layer structured as shown in Figure 2. The spar-
sity control parameter γ and shrinkage parameter λ (which reduces
noise in an estimate) gives us better interpretability of the unfolded
network. An example of a three-layered architecture is shown in
Figure 3.

The estimated output of FirmNet is denoted by x̃ = z(y, θ),
where θ = {U, V, λ, γ} are all trainable parameters. We use stochas-
tic gradient-descent (SGD) to minimize the loss function C(θ), av-
eraged over the training data {yi,x?i }Mi=1 and defined as follows

C(θ) =
1

M

M∑
i=1

Lδ(x
?
i , z(yi, θ)), s.t. λ > 0, γ > 1, (10)

where, for a user-defined parameter δ,

Lδ(x, z(y, θ)) =
1

2
‖x− z(y, θ)‖22, ‖x− z(y, θ)‖1 ≤ δ,

δ‖x− z(y, θ)‖1 −
1

2
δ2, otherwise.

(11)

This architecture can be viewed as a recurrent neural network
(RNN), unfolded over iterations (synonymous with time).

3. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the performance of the proposed DNN
architecture, FirmNet, over the more general, broader network ar-
chitecture of Learned ISTA (LISTA) [16]. We use 15 layers in Firm-
Net as well as LISTA for comparison. In the experiments, the en-
tries of an overcomplete dictionary D ∈ Rm×n are drawn from an
i.i.d. normal distribution, N (0,m−1). The entries of x? ∈ Rn

are drawn from an i.i.d. N (0, 1) with probability ρ (i.e., x? is
Bernoulli-Gaussian). We refer to ρ as the sparsity factor. The un-
dersampling factor γc = m/n ∈ (0, 1). During training, we ini-
tialize the parameters {U, V,x(0)} of the FirmNet and LISTA with
{ηDT, (I − ηDTD),0} for a fair comparison.

We consider the objective measures such as reconstruction
signal-to-noise (R-SNR) and probability of error in support (PES)
[15] to quantify the performance. Here, R-SNR is evaluated over
1000 test realizations. The probability of error in support is a strong
support recovery metric and is evaluated over 1000 test realizations.
Reconstruction SNR (R-SNR) between the predicted sparse code x̃
and the true sparse code x? is defined as

R-SNR = 10 log10

(
‖x?‖22
‖x̃− x?‖22

)
dB. (12)

In Equation (3.29) of [15], the measure to quantify the effec-
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Fig. 4: [color online ] The learned (a) parametric MC penalty
gγ(x;λ) with its corresponding (b) firm-thresholding operator
F gγ (x;λ) (blue). The optimal parameters for input SNR of 20 dB
were γ = 6.68 and λ = 0.06. The original signal y = x line
(red), and a soft-thresholding operator (green) highlights the bias in
estimation.
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Fig. 5: [color online ] Recovered sparse code from LISTA and the
proposed FirmNet with target vector for 20 dB input SNR and under-
sampling factor γc of 0.7. The superiority of FirmNet over LISTA
in terms of correct estimation of support and amplitude values can
be seen in this plot.

tiveness of a sparse recovery algorithm in estimating true support is
given as

d(S(x̃),S(x?)) = max(|S(x̃)|, |S(x?)|)− |S(x̃) ∩ S(x?)|
max(|S(x̃)|, |S(x?)|) ,

(13)
where | · | is the cardinality of the argument and S(x) is the support
of x. The probabililty of error in support (PES) is defined as

PES =
1

N

N∑
i=1

d(S(x̃i),S(x?i )). (14)

We observe that the bias an `1 penalty (LISTA) induces is con-
tained by the MC penalty (FirmNet) in Figure 4(b). The aforemen-
tioned bias (in their corresponding proximal operator) is rendered as
an underestimation of the signal amplitude. This in turn causes the
R-SNR for LISTA to drop as evident in Figure 6.

Another shortcoming of the `1 penalty is that it can not differen-
tiate a shrinkage parameter λ for shrinking noise in the measurement
and sparsity of the estimate. As the input SNR decreases or sparsity
factor increases, the shrinkage parameter λ in LISTA doesn’t offer
a good trade-off with one free parameter λ. With high noise, λ is
lower, assigning more weight to f(x) in (2), leading to a dense esti-
mate. This translates to a higher PES as seen in Figure 1(a). The pro-
posed network, FirmNet, has an additional free parameter γ exclu-
sively for sparsity control. This parameter allow us to induce sparsity
in an estimate while maintaining a separate control over noise vari-
ance f(x). We recover nearly exact support with a lower PES score

10 15 20 25 30
INPUT SNR (dB)

10

15

20

25

30

R-
SN

R 
(d

B)

FIRMNET
LISTA

(a)

10 15 20 25 30
INPUT SNR (dB)

10

15

20

25

30

R-
SN

R 
(d

B)

FIRMNET
LISTA

(b)

10 15 20 25 30
INPUT SNR (dB)

10

15

20

25

30

R-
SN

R 
(d

B)

FIRMNET
LISTA

(c)

10 15 20 25 30
INPUT SNR (dB)

10

15

20

25

30

R-
SN

R 
(d

B)

FIRMNET
LISTA

(d)

Fig. 6: [color online ] Consistent improvement of FirmNet’s R-
SNR compared to LISTA’s over input SNRs is shown for sparsity
factor (a) ρ = 0.05, (b) ρ = 0.1 , (c) ρ = 0.15, and (d) ρ = 0.2.
(γc = 0.7)
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Fig. 7: [color online ] These plots highlight the role of the learned
parameter γ in controlling the sparsity ρ. Also, the role of the learned
parameter λ, which varies with input SNR, underscores the control
over noise variance.

and high R-SNR as shown in Figure 1(b) and Figure 6, respectively.
Reformulating the iterative algorithms into a DNN-like archi-

tecture makes the network interpretable. In FirmNet, there are two
free parameters (γ and λ) parameterizing the nonlinearity in addi-
tion to the affine transformations U and V . In Figure 7, we affirm
that the additional parameter γ (of the MC penalty) indeed controls
the sparsity, as it increases almost linearly with the sparsity level ρ.
Also, the shrinkage parameter λ corresponds to the noise variance,
and decreases drastically with increasing input SNR.

4. CONCLUSION

In this paper, we reconsidered fundamentally the penalty used (i.e.,
an `1-norm in LASSO) to recover a true sparse vector x?. We
showed that the MC penalty would result in a nearly unbiased esti-
mate. An iterative firm-thresholding algorithm (IFTA) was proposed
to solve the optimization problem with a non-convex MC penalty us-
ing a firm-thresholding proximal operator. We further demonstrated
the efficacy of an unrolled IFTA-inspired DNN architecture called
FirmNet, and showed that it outperforms LISTA, in terms of proba-
bility of error in support [15] – a strong support recovery metric, by
at least three-fold. The proposed network also offers an additional
degree of control for sparsity, and has precise interpretability for
sparsity level and noise variance.
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