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ABSTRACT

Blind deconvolution and phase retrieval are both funda-
mental problems with a growing interest in signal process-
ing and communications. In this work, we consider the task
of simultaneous blind deconvolution and phase retrieval. We
show that this non-linear problem can be reformulated as a
low-rank tensor recovery problem and propose an algorithm
named TIHT-BDPR to recover the unknown parameters. We
include a series of numerical simulations to illustrate the ef-
fectiveness of our proposed algorithm.

Index Terms— Blind deconvolution, phase retrieval,
low-rank tensor recovery, tensor IHT, HOSVD.

1. INTRODUCTION

Blind deconvolution and phase retrieval are problems of con-
siderable interest in many applications including signal pro-
cessing [1, 2] and image processing [3]. In image process-
ing, blind deconvolution refers to the problem of recovering
a sharp version of an image from its convolution with an un-
known blur kernel [3]. Mathematically, the goal of blind de-
convolution is to recover both x and g from their convolution
y = x~g. In phase retrieval problems, one aims to recover a
complex signal x from the amplitude of its Fourier transform,
i.e., y = |Fx|2, where F is the DFT matrix.

Recently, low-rank tensor recovery problems have gained
attention in many fields, such as hyperspectral image restora-
tion [4], signal processing [5, 6], and video processing [7].
Nuclear norm minimization is a popular heuristic for rank
minimization in low-rank matrix recovery problems and
works well under suitable conditions on the measurement
system [8,9]. Unfortunately, computation of the nuclear norm
is NP-hard for high order tensors [10]. To develop a tractable
method as an alternative to nuclear norm minimization, the
authors in [11] extend the iterative hard thresholding (IHT)
algorithm that is widely used in compressive sensing [12, 13]
and low-rank matrix recovery [14] to the tensor setting and
introduce the tensor IHT (TIHT) algorithm.

In this work, we address the problem of simultaneous
blind deconvolution and phase retrieval (BDPR). In par-
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ticular, we aim to recover a complex signal x and a real
signal g from the convolution of |Fx|2 and g, i.e., from
y = |Fx|2 ~ g. This model may stem from phase imaging
applications that employ partially coherent illumination (e.g.
light bulbs, LEDs, and X-ray tubes) [15–17], rather than the
traditional coherent (laser) illumination. In this situation, the
forward model can be treated as the coherent situation with
an extra convolution due to the source shape. We introduce
a novel way to transform this non-linear problem into a low-
rank tensor recovery problem. We also propose an algorithm
named TIHT-BDPR by combining the TIHT algorithm and
the higher order singular value decomposition (HOSVD)
to solve this low-rank tensor recovery problem and recover
the unknown parameters. Our numerical simulations show
that the proposed algorithm can recover the low-rank tensor
and the unknown parameters very well when provided with
enough measurements. The authors in a recent work [18]
address a similar problem of BDPR; however, both the signal
models and proposed methods are different from ours. In par-
ticular, they relax their BDPR problem to a convex program
with a lifted matrix recovery formulation.

The remainder of this work is organized as follows. In
Section 2, we briefly review some basic concepts in tensor
analysis. In Section 3, we define and transform the non-linear
BDPR problem into a low-rank tensor recovery problem. We
present the proposed TIHT-BDPR algorithm in Section 4 and
illustrate its performance in Section 5. Finally, we conclude
our work in Section 6.

2. PRELIMINARIES

A D-th order tensor T ∈ CN1×···×ND can be viewed as
a high-dimensional extension of vectors and matrices. That
is, vectors and matrices are special cases of tensors when D
equals 1 and 2, respectively. Next, we briefly review some ba-
sic definitions and concepts used in tensor analysis [19, 20].

We define the inner product of two tensors A, B ∈
CN1×···×ND as

〈A,B〉 ,
N1∑
n1=1

· · ·
ND∑
nD=1

B∗(n1, · · · , nD)A(n1, · · · , nD),

where A(n1, · · · , nD) is the (n1, · · · , nD)-th entry of tensor
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A, and the same for B(n1, · · · , nD).1 The Frobenius norm
of a tensor A ∈ CN1×···×ND , induced by the above inner
product, is given as

‖A‖F =
√
〈A,A〉.

Let rank(·) be an operator that computes the rank of a
given matrix or tensor. We use the expression [D] to denote
the set {1, 2, . . . , D}. Then, the rank of a D-th order tensor
T ∈ CN1×···×ND is defined as a tuple r = (r1, · · · , rD) with

rd = rank
(
T {d}

)
, d ∈ [D].

Here, matrix T {d} ∈ CNd×N1···Nd−1Nd+1···ND is the mode-d
matricization or the d-th unfolding, which is defined as

T {d}(nd; (nl)l∈[D]\d) , T (n1, · · · , nD).

It can be seen that d and the indexes in [D]\d define the rows
and columns of T {d}, respectively.

The HOSVD for a tensor T ∈ CN1×···×ND is a special
case of the Tucker decomposition and is given as [21, 22]

T = S ×1 U
(1) · · · ×D U(D),

where S ∈ Cr1×···×rD is the core tensor and U(d) ∈ CNd×rd

denotes the basis with rd ≤ Nd. More details about the prop-
erties of S and U(d) can be found in [11,19,20]. S×dU(d) ∈
Cr1×···×rd−1×Nd×rd+1×rD is the mode-d product of tensor S
and a matrix U(d), and is defined element-wise as

(S ×d U(d))(i1, · · · , id−1, nd, id+1, · · · , iD)

=

rd∑
id=1

S(i1, · · · , iD)U(d)(nd, id).

Let ◦ denote the tensor product. Note that

S ×1 U
(1) · · · ×D U(D) = SU(1) ◦ · · · ◦U(D) (2.1)

if rd = 1 for all d ∈ [D], i.e., S is a scalar and U(d) is a
column vector.

3. PROBLEM FORMULATION

The BDPR problem considered in this work is motived by a
real application in image processing. In particular, we con-
sider phase imaging from a defocused intensity stack, which
can be obtained by placing the detector at I different positions
along the optical axis to take intensity images. With tradi-
tional coherent illumination, the i-th intensity image yi ∈ RN
can be written as2

yi = |F(x� gi)|2, i = 1, . . . , I.

1Unless otherwise specified, we use the superscripts >, H , and ∗ to de-
note transpose, conjugate transpose, and conjugate, respectively.

2Note that we formulate the two-dimensional image processing problem
as a one-dimensional problem with vectorization. Then, we use one dimen-
sional DFT and circular convolution in this work.

Here, F ∈ CN×N is the DFT matrix with the (n1, n2)-th
entry being F(n1, n2) = e−j2π(n1−1)(n2−1)/N , gi ∈ CN is
a Gaussian chirp phase mask that depends on the i-th posi-
tion of the detector, and x ∈ CN is the complex field of the
sample. We use � to denote the elementwise (Hadamard)
product. Rather than the traditional coherent illumination,
we work on a more practical scenario in which partially co-
herent illumination is used. Partially coherent illumination,
such as from light bulbs, LEDs, and X-ray tubes, is often un-
avoidable and even preferred for its improved light through-
put, immunity to speckle noise, improved resolution (up to
twice the coherent bandlimit) and better depth sectioning [15–
17]. In this work, we seek to explicitly account for illumi-
nation coherence in our phase retrieval algorithms, allowing
improved phase recovery in partially coherent systems with
arbitrary light source shape. Using the Van Cittert-Zernike
theorem [23], we propose to model coherence with a 2D func-
tion describing the source shape and treat the forward model
as a coherent situation with an extra convolution due to the
source shape:

yi = |F(x� gi)|2 ~ (Pis), i = 1, . . . , I. (3.1)

Here, ~ denotes circular convolution. The source shape s ∈
RN is an unknown, discretized source distribution function,
and Pi ∈ RN×N is a known linear operator that scales the
source shape according to the detector position.

We assume that the unknown source shape s lives in a
subspace spanned by the columns of a known matrix B ∈
RN×K with K � N , namely, we can represent the source
shape as s = Bh with some coefficient vector h ∈ RK . A re-
cent work [24] shows an experimental validation of this with
Gaussian bumps of different variances. Denote bk ∈ RN as
the k-th column of B. Without loss of generality, we also as-
sume that ‖h‖2 = 1. Then, recovery of the source shape s is
equivalent to the recovery of the unknown coefficient vector
h. In this work, our goal is to estimate both the source shape
s and the complex sample field x from yi in (3.1), which is
a problem that combines blind deconvolution and phase re-
trieval.

Define an N ×N circulant matrix as

circ(Pibk) ,
1

N
FH4i,kF, (3.2)

whose action corresponds to circular convolution with Pibk.
Here, 4i,k , diag(FPibk) is a diagonal matrix. Observe
that

yi= |F(x� gi)|2~(Pis)=

K∑
k=1

h(k)|F(x� gi)|2~(Pibk)

=

K∑
k=1

h(k) circ(Pibk)|F(x� gi)|2

=
1

N

K∑
k=1

h(k)FH4i,kF|F(x� gi)|2,
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where the second equality follows from s =
∑K
k=1 h(k)bk

with h(k) being the k-th entry of h ∈ RK and the last equal-
ity follows by plugging (3.2). Denote en as the n-th column
of an N × N identity matrix. Then, we can write the i-th
intensity observation at pixel n, i.e., the n-th entry of yi, as

yi(n)=
1

N

K∑
k=1

h(k)eHn FH4i,kF|F(x� gi)|2

=

N∑
n1=1

N∑
n2=1

K∑
k=1

[x(n1)∗x(n2)h(k)]·
[

1

N

[
F(:, n1)Hgi(n1)∗

]
�
[
F(:, n2)>gi(n2)

]
F>diag(F(:, n)H)FPibk

]
= 〈x∗ ◦ x ◦ h,Li,n〉 ,

whereLi,n ∈ CN×N×K is a sensing tensor with the (n1, n2, k)-
th entry defined as

Li,n(n1, n2, k) =
1

N

[
F(:, n1)>gi(n1)

]
�
[
F(:, n2)Hgi(n2)∗

]
FH diag(F(:, n))F∗P∗i b

∗
k.

(3.3)
Denote L : CN×N×K → RNI as the composite linear

operator used to obtain the measurements y ∈ RNI , i.e., y =
L(x∗ ◦x◦h). In particular, we have y = [y>1 · · · y>I ]> with

yi(n) = 〈x∗ ◦ x ◦ h,Li,n〉 ,

whereLi,n ∈ CN×N×K is a sensing tensor defined in (3.3). It
follows from the observation (2.1) and definition of HOSVD
that x∗ ◦ x ◦ h is a rank-r1 tensor with r1 = (1, 1, 1). Now,
we can transform the non-linear BDPR problem (3.1) into a
rank-r1 tensor recovery problem. Given the sensing tensor
operator L and the linear measurements y, we propose the
following minimization program

{x̂, ĥ}=arg min
x̃,h̃

1

2
‖y−L(T )‖22 s. t. T = x̃∗ ◦ x̃ ◦ h̃ (3.4)

to recover the rank-r1 tensor x∗ ◦x◦h as well as the original
complex field sample x and the subspace coefficient h.

As is known, the above minimization program is NP-hard
in general. In matrix analysis, however, nuclear norm mini-
mization is a popular heuristic of rank minimization problems
and works well in low-rank matrix recovery under suitable
conditions on the measurement system [8, 9]. Unfortunately,
unlike matrices, computation of the nuclear norm is NP-hard
for tensors with order D ≥ 3 [10]. This motivates us to de-
velop some other tractable method as an alternative.

4. THE PROPOSED TIHT-BDPR ALGORITHM

Inspired by the TIHT algorithm introduced in [11], we pro-
pose the TIHT-BDPR algorithm, which is summarized in
Algorithm 1, by combining the TIHT algorithm and the

Algorithm 1 TIHT-BDPR

Input: L, y, M , {µm}Mm=1, N , K.
Output: x̂, ĥ.
Initialize: T 0 = 0.
for m = 1, 2, . . . ,M do

Compute T̃ m = T m−1 + µmL∗(y − L(T m−1)).
Compute T m = Pr1

(T̃ m).
end for
Perform truncated HOSVD on T̂ = T M :

{U(1), U(2), U(3), S} = HOSVD(T̂ , r1).

if U(1) 6= U(2)∗ then U(1) = −U(1), U(3) = −U(3)

end if
Compute x̂ =

√
SU(2), and ĥ = U(3).

HOSVD. We divide the process of solving program (3.4)
into two parts: (i) finding a rank-r1 tensor T̂ with TIHT by
solving the following minimization problem

T̂ = arg min
T

1

2
‖y − L(T )‖22 s. t. rank(T ) = r1,

and (ii) estimating {x,h} by computing the truncated HOSVD
of T̂ .3

In the first part of Algorithm 1, L∗ ∈ RNI → CN×N×K
is the corresponding adjoint operator of L. We use µm to de-
note the step size parameter at the m-th iteration. Pr1

is an
operator that computes a rank-r1 approximation of a given
tensor via the HOSVD. In the second part, based on the con-
jugate symmetry property of the first two components in the
rank-r1 tensor T̂ and the sign ambiguity that exists in a tensor
decomposition, we have added an extra step after the HOSVD
to remove this sign ambiguity. As we fix r1 = (1, 1, 1), the
HOSVD returned core tensor S becomes a scalar while the
bases U(1), U(2), U(3) are all vectors with unit `2-norm.

Fixing the index k, note thatLi,n(:, :, k) ∈ CN×N defined
in (3.3) is a Hermitian matrix. This Hermitian structure of the
sensing tensors preserves the symmetry property of T̂ , i.e.,
U(1) = U(2)∗, up to a sign ambiguity if we start the TIHT-
BDPR algorithm with zero initialization.

5. NUMERICAL SIMULATIONS

In this section, we illustrate the effectiveness of the proposed
TIHT-BDPR algorithm with some numerical experiments.
We set the parameters N = 25 and K = 2. Then, we create
the complex field sample x ∈ CN as a complex Gaussian
vector with entries satisfying CN (0, 1). The subspace co-
efficient vector h ∈ RK is generated as a real Gaussian
vector with entries satisfying N (0, 1). The subspace matrix

3In this work, we use a Matlab toolbox named Tensorlab to compute the
truncated HOSVD [25].
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B ∈ RN×K is also generated as a real Gaussian matrix with
entries satisfyingN (0, 1). To simplify the simulation, we use
a set of lengthN complex Gaussian vectors gi ∈ CN with en-
tries following CN (0, 1) instead of the Gaussian chirp phase
mask. The linear operator Pi ∈ RN×N is also created as a
real Gaussian matrix with entries satisfying N (0, 1).4 Then,
the measurements y and sensing tensors Li,n are generated
according to (3.1) and (3.3), respectively.

To implement the proposed TIHT-BDPR algorithm, we
set the step size µm = 1 for all m. We start with zero ini-
tialization and set the maximal number of iterations as M =
5 × 104. The simulation results with I = 5 and I = 20
are shown in Figs. 1 and 2, respectively. To better illustrate
the results, we reshape the absolute value and global phase
ambiguity of x and x̂ to a 5 × 5 matrix. Note that there is
a phase ambiguity problem in phase retrieval, therefore, we
can only recovery the phase of x up to a global phase am-
biguity. In particular, we view the estimated phase ∠x̂ as a
perfect recovery as long as the entries in vector ej∠x/ej∠x̂

are equal. Denote T ? = x∗ ◦ x ◦ h, x, and h as the true
tensor, complex field sample, and subspace coefficient vec-
tor, respectively. Let T̂ , x̂, and ĥ denote the recovered ten-
sor, complex field sample, and subspace coefficient vector,
respectively. We define the relative recovery error between
tensors, absolute value of complex field sample, and subspace
coefficient vector as

∆T ,
‖T ? − T̂ ‖F
‖T ?‖F

, ∆|x| ,
‖|x| − |x̂|‖2
‖x‖2

, ∆h , ‖h− ĥ‖.

Note that ‖h‖2 = 1, so the relative recovery error between the
true and recovered subspace coefficient vector is ‖h − ĥ‖2.
We present the relative recovery error for I = 3, 5, and 20
in Table 1. It can be seen that the TIHT-BDPR algorithm can
provide accurate estimation of the complex field sample x,
subspace coefficient vector h, and the rank-r1 tensor, as long
as the number of detector positions I is large enough. The
bottom right plots (d) in Figs. 1 and 2 also indicate a linear
convergence of our proposed algorithm.

6. CONCLUSION

In this paper, we work on the problem of simultaneous blind
deconvolution and phase retrieval. In particular, we trans-
form this non-linear problem into a linear inverse problem,
namely, a rank-(1, 1, 1) tensor recovery problem. Meanwhile,
we propose an algorithm named TIHT-BDPR to solve this
rank-(1, 1, 1) tensor recovery problem. Numerical simula-
tions indicate that the proposed algorithm works very well.
We leave the convergence analysis and robust performance
analysis on noisy measurements for future work.

4Note that we have used several random assumptions here, which may
not be satisfied in the imaging model that motivated our problem. However,
these assumptions can extremely simplify our simulations and provide us a
sense of the overall sample complexity.
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Fig. 1: I = 5: (a) the absolute value of the true x, (b) the
absolute value of the estimated x̂, (c) the global phase ambi-
guity, (d) the cost function 1

2‖y−L(T m)‖22 at each iteration.
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Fig. 2: I = 20: (a) the absolute value of the true x, (b) the
absolute value of the estimated x̂, (c) the global phase ambi-
guity, (d) the cost function 1

2‖y−L(T m)‖22 at each iteration.

∆T ∆|x| ∆h

I = 3 1.2244 0.4818 0.0386
I = 5 0.0138 0.0073 6.5894× 10−4

I = 20 1.2511× 10−7 6.0466× 10−8 4.9409× 10−9

Table 1: Relative recovery error for I = 3, 5, and 20.
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