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ABSTRACT

In this paper, a robust sequential dictionary learning (DL)
algorithm is presented. It is obtained by using a robust loss
function in the data fidelity term of the DL objective instead
of the usual quadratic loss. The proposed robust loss func-
tion is derived from the α-divergence as an alternative to
the Kullback-Leibler divergence which leads to a quadratic
loss. Compared to other robust approaches, the proposed
loss has the advantage of belonging to class of redescending
M-estimators, guaranteeing inference stability for large devi-
ation from the Gaussian nominal noise model. The algorithm
is derived via adaptive sequential penalized rank-1 matrix
approximation using a block coordinate descent approach to
obtain the vector pairs of different rank-1 matrices. Perfor-
mance comparison with similar robust DL algorithms on digit
recognition highlights efficacy of the proposed algorithm.

Index Terms— Robust estimation, dictionary learning,
α-divergence, outlier suppression

1. INTRODUCTION

Sparse signal representation [1] is enjoying a lot of atten-
tion from the research community and has been successfully
applied to a range of signal processing applications. A sig-
nal admitting sparse representation can be represented by
using only a few functions from a basis set (Fourier, DCT,
wavelets). The choice of a basis set under which a given set
of signals admits an efficient sparse approximation is crucial,
and researchers [2] have shown that learning a basis (dictio-
nary) from the data itself improves its sparse approximation.
In the past 1.5 decades, to take advantage of sparse approx-
imations, a lot of dictionary learning (DL) methods have
been proposed for a variety of signal processing applications.
Among these one can cite image restoration [3], fMRI signal
analysis [4–7], and face recognition [8] etc. Most popular
dictionary learning (DL) methods [2][9] pose the DL prob-
lem with an `2-norm fidelity term and a sparse regularization
term. These data-driven methods assume the Gaussian noise
prior, leading to a squared `2-term as the maximum likelihood
estimate. If such prior holds, the resulting dictionaries have
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been shown to achieve state-of-the-art performance. On the
other hand, if the training data is contaminated i.e., contains
anomalous observations (outliers), the `2-norm loss function,
being sensitive to outliers, offers no protection against them.
The effects of such outliers can be mitigated by utilizing
methods developed in robust statistics [10]. By making as-
sumptions on outlier statistics, they develop learning methods
that are less sensitive to their presence. Several robust DL
methods have been developed recently using tools from area
of robust statistics [11–14]. These methods replace the `2-
norm data fidelity term with `1-norm error, also called the
least absolute deviation [10, Ch. 7.11], Huber loss, or trun-
cated `1-norm error term to counter the effects of outliers,
leading to an outlier resistant robust dictionary estimate.
In this paper, we propose a novel robust DL algorithm that
minimizes assumption on the noise. This is done by deriving
a loss function from the α-divergence [15] and using it as the
data fidelity term, instead of the quadratic loss widely used in
the DL objective functions. The derived loss function belongs
to the class of redescending M-estimators which guarantees
stability of inference for deviations from the Gaussian nomi-
nal noise model [10]. The proposed algorithm is obtained via
adaptive sequential penalized rank-1 matrix approximation,
where a block coordinate descent approach is used to deter-
mine the vector pairs for the different rank-1 approximation
matrices. The adaptive aspect of the algorithm allows differ-
ent amount of shrinkage to be used for different entries of the
sparse code matrix X [16].

2. BACKGROUND

Given a collection of signals Y ∈ Rn×N , under the DL
framework, an overcomplete dictionary D ∈ Rn×K and a
sparse coefficient matrix X ∈ RK×N can be obtained by
optimizing the following objective function [16]

min
D∈D,X

‖Y −DX‖2F + λ‖X‖1 (1)

where the ‖X‖1 =
∑N
i=1

∑K
j=1 |x

j
i |, x

j
i is the entry at ith

column and jth row of X, λ is the sparsity regularization pa-
rameter, and D = {dj ∈ Rn | ‖dj‖2 = 1 ∀j}. The objective
in (1) is non-convex, however, it admits a multi-convex struc-
ture [17]. Thus, convergence to a local minima is possible us-
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ing an alternating optimization strategy. Using this strategy,
most DL algorithms solve the problem in two stages, first fix-
ing D, they perform `1-norm minimization for which various
efficient methods exist [18].Second, with X fixed, (1) is min-
imized over D. To do so, columns (atoms) of the dictionary
D are either updated simultaneously [9][19] or sequentially
[2][20], where the global minimization (1) (w.r.t. D) is de-
composed into K sub problems. DL algorithms alternate be-
tween these two stages until convergence.
An alternative DL approach has been adopted in [16, 21–23],
where the authors aim to approximate the dataset Y by a pe-
nalized sum of rank-1 matrices, with the factors of such rank-
1 matrices approximated using a simple and exact block co-
ordinate descent approach. This approach works directly on
the residual Ej = Y −

∑K
i=1,i6=j dix

i to generate new pairs
(dj ,x

j) using the objective

{dj ,xj} = arg min
dj ,xj

‖Ej − djx
j‖2F + λ‖xj‖1 s.t. D ∈ D. (2)

The resulting algorithm can be seen as a penalized variant of
alternating least squares [24] or power method for computing
the SVD, where the `1-norm penalty is used to learn sparse
xj . The estimates of dj and xj are then given by

dj =
Ejx

j>

||Ejxj>||2
, (3)

xj = sgn(d>j Ej) ◦
(
|d>j Ej | −

λ

2
1>(N)

)
+

(4)

where ◦, | . |, sign (.), (x)+ define the entrywise variants of
Hadamard product, absolute value, sign, and max(0, x) func-
tions respectively. The 1N is a vector of ones of size N . As
illustrated by different experimental results [16,21], this alter-
native DL scheme leads to improved performance compared
to state-of-the-art methods. In the next section, we adopt this
approach to develop an extension of [16] for robust DL.

3. PROPOSED DICTIONARY LEARNING
APPROACH

To induce robustness into our dictionary estimates, we pro-
pose to use a loss function from the class of redescending
M-estimators which guarantees stability of inference for de-
viations from the Gaussian nominal noise model [10]. The
function is derived from the α-divergence [15], however, due
to the lack of space, the derivation can not be included here.
The loss function `α (termed as Gaussian fidelity) is defined
as

`α(v) =
1

α

(
1− exp

(
−αv2

2

))
. (5)

If α → 0, we have `α(v) → `0(v) = v2/2, and the familiar
quadratic loss associated with the Frobenius norm is recov-
ered, which is highly sensitive to outliers in the data. The

`2-norm, `1-norm and Gaussian fidelity terms are shown in
Fig. 1 a). The case α > 0, corresponds to a weighted estima-
tion that tends to down weight the errors that are far from the
nominal density, thus mitigating effects of the outliers.
The proposed robust DL algorithm is derived by using a vari-
ant of (1) where the function `α (5), shown above, is used
instead of the Frobenuis norm in the fidelity term to give

min
D,X

`α (Y −DX) + λ

N∑
i=1

K∑
j=1

| xji | s.t. D ∈ D (6)

where

`α (Y −DX) =

N∑
i=1

n∑
m=1

`α (y
m
i − dmxi) (7)

where `α is defined in (5), xji is the entry at ith column and jth

row of X, dm is themth row of D, and xi is the ith column of
X. The proposed procedure is robust in the sense that DL is
carried out using an objective function guaranteeing a stable
learning in the presence of outliers. To solve the problem in
(6), we start by expressing the matrix DX as a sum of K
rank-1 matrices i.e.

∑K
j=1 djx

j , and propose an exact block
coordinate descent approach to estimate the various rank-1
matrices as done in [16, 21]. Thus, we start by writing (6) as

{
dj ,x

j
}
= min

dj∈D,xj

N∑
i=1

`α

(
eij − djx

j
i

)
+ λ|xji | (8)

where eij is the ith column of Ej and Ej = Y−
∑K
i=1,i6=j dix

i.
The objective in (8) aims at estimating components of one
rank-1 matrix at a time and to solve it, we propose an iterative
alternating optimization strategy, i.e., during each iteration of
the algorithm, we performK penalized rank-1 matrix approx-
imations. The updates for dj and xj are found by minimizing
(8) one variable at a time, while fixing the other. Solutions
for each of the variables are derived next.

3.1. Atom update

With a fixed xj , the update for dj is found by solving

dj = min
dj∈D

N∑
i=1

1

α

(
1− exp

(
−α
2

(
eij − djx

j
i

)2))
(9)

Differentiating (9) w.r.t. dj and setting it to zero, we get

N∑
i=1

exp

(
−α
2

(
eij − djx

j
i

)2)(
djx

j
i

2
− eijx

j
i

)
= 0

(10)
with the solution for dj given by

dj =

(
N∑
i=1

Wix
j
i

2

)−1 ( N∑
i=1

Wieijx
j
i

)
(11)
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followed by `2-normalization of dj . Here Wi ∈ Rn×n is a
diagonal weighting matrix with exp(−α(eij − djx

j
i )

2/2) as
the weights of the diagonal.

3.2. Sparse code update

Next, we fix the atom dj , and find an update for xj by solving

xji = min
xj
i

`α

(
eij − djx

j
i

)
+ λ|xji | ∀ i = 1, . . . , N. (12)

Taking derivative of (12) w.r.t. xji and setting it to zero, we
get

1

σ
d>j Wi

(
eij − djx

j
i

)
+ λ sign

(
xji

)
= 0 (13)

here Wi is the weighting matrix and the solution for xji is
given by

xji = sign (ηi)
(
|ηi| − λ̃i

)
+
∀ i = 1, . . . , N

with ηi =
d>j Wieij

d>j Widj
and λ̃i =

λ

d>j Widj
.

(14)

The resulting (dj ,x
j) updates can be seen as a variant of the

iterative re-weighted least squares method for rank-1 matrix
approximation and based on our experience, only requires 3−
6 iterations of (11) and (14) to reach a local minima.

3.3. Weights & parameter selection

The weighting function resulting from differentiation of (8)
with respect to either dj or xji , leading to a weighted least
squares estimating equation is given by

Wi

(
eij ,dj , x

j
i , α
)
= exp

(
−α/2

(
eij − djx

j
i

)2)
(15)

with weights that are nearly zero for outliers (i.e., when the
residual matrix entry eij is far from djx

j
i .

The special case α = 0 (used in first iteration of the algo-
rithm), corresponds to uniform weights w1 = · · · = wn = 1
and the implied learning algorithm is the one obtained by the
Frobenious norm [16]. On the other hand, if α > 0, entries of
eij far from the djx

j
i receives relatively low weight compared

to observations near djx
j
i . Due to the form of the weights,

anomalous observations far from bulk of the data are automat-
ically down-weighted and have little impact on the final esti-
mate making the learning algorithm robust against outliers.

The parameter α in (15) tunes the extent to which we
down-weight anomalies in the data (see Fig. 1 c)), and its
choice is of practical importance in applications. Let e ∈ Rn
be the residual vector and γ be the demarcation point such
that if the square of an entry of e is above γ, its correspond-
ing weight will be less than β. Thus to find the optimum
parameter α, we need to find a relationship between α and
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Fig. 1. (a) `2, `1, and Gaussian fidelity (5) terms, (b) weight
functions, (c) Gaussian weights for different α values.

γ. Such a relationship can be obtained from (15), and is
given by α = −2 ln(β)/γ, where β is the respective weight
at demarcation point γ. In all experimental sections, we use
β = 0.5 unless specified otherwise. The selection of γ is per-
formed using the following procedure. Let I = dδne, where
δ ∈ (0, 1) is a scalar, and dδne outputs smallest integer larger
than δn. Then we set γ to be the Ith largest element from the
set {e2m, m = 1, . . . , n}. The parameter δ corresponds to the
expected proportion of outliers present in e.

Algorithm 1: Proposed robust DL algorithm.

Input: Data matrix Y ∈ Rn×N , D ∈ Rn×K , λ, δ,
noIt

1 Initialization: Set X = 0, ε = 10−4, and
Wi = I, ∀ i = 1, . . . , N .

2 for t = 1 : noIt do
3 for j = 1 : K do
4 Compute Ej = Y −

∑K
i=1,i6=j dix

i

5 if t 6= 1 then
6 Using δ, compute Wi ∀ i = 1, . . . , N as

outlined in section 3.3.
7 while ‖dtj − dt−1j ‖2 > ε do
8 Compute ηi and λi using (14)

9 xji = sign (ηi)
(
|ηi| − λ̃i

)
+
∀ i = 1, . . . , N

10 dj =
(∑N

i=1 Wix
j
i

2
)−1 (∑N

i=1 Wieijx
j
i

)
11 dj = dj/‖dj‖2

Output: D,X

4. EVALUATION ON DIGIT RECOGNITION

Digit recognition is an integral part of any document process-
ing systems. These system require large amount of training
data to learn from, however, the data could contain different
types of contaminations (noise, occlusion / outliers). One
way of tackling such problems are to find and discard the
highly contaminated signals before the learning process. This
technique, however, becomes prohibitive as the training size
increases. In such conditions, a technique which is robust
against such contaminations could prove beneficial.

2974



Fig. 2. Examples from MNIST training digits with outliers.

In this section we present performance comparison of the pro-
posed robust DL method with respect to K-SVD [2], ORDL
[13], and L1-KSVD [12]. We use USPS [25] and MNIST [26]
handwritten digits datasets for the evaluation. Each dataset
contains two sub-datasets for training and testing purposes.
USPS dataset contains 7, 291 training and 2, 007 testing digit
images, whereas, the MNIST dataset has 60, 000 training and
10, 000 testing digit images. We resized all gray-scale im-
ages to the same size of 16 × 16 pixels and normalized them
w.r.t. the maximum pixel intensity. We generated outliers of
the same size using a higher order polynomial with random
parameters and added them to the training as well as testing
images while making sure that the overlapping pixel intensi-
ties did not exceed 1. Few examples of corrupted images from
MNIST training dataset are shown in Fig. 2. These corrupted
training images were vectorized and placed as columns of a
training matrix Y ∈ Rn×N , where n = 256 andN represents
the number of training samples.
We learn 10 class-specific dictionaries for each digit where

the individual dictionaries were initialized with K samples
from the respective training data itself. The sparsity parame-
ters were set to λ = 0.1 for ORDL, L1-KSVD, and the pro-
posed algorithm. For K-SVD, the sparsity parameter s was
set to s = K. For the proposed algorithm, we set δ = 0.1
and β = 0.5 for USPS and β = 0.1 for the MNIST datasets.
All tuning parameters were selected using cross validation.
The learning process was iterated over 40 iterations or was
stopped early if (‖Dt−Dt−1‖F /‖Dt‖F < 0.01). The batch-
size for ORDL was set to 250. Once the learning was com-
plete, given a test sample yi, we used orthogonal matching
pursuit (OMP) to solve

xi = min
z
‖yi −Dz‖22 s.t. ‖z‖0 ≤ 2K (16)

where D ∈ Rn×10K is the full dictionary. Using the re-
sulting sparse vector xi, we calculate the representation er-
ror w.r.t. all class-specific dictionaries and select the one with
smallest representation error. We repeated this procedure over
K = {2, 3, 4} and 20 trials, and the mean recognition results
are reported in Table 1. We present the results on outlier free
test datasets in Table 2 as well. From both tables, it is evi-
dent that the dictionaries learned by the proposed algorithm
outperformed the competition. For visualization, the recov-
ered dictionaries (for K = 3) are shown in Fig. 3. The fig-
ure shows that the proposed algorithm was able to fully reject

Table 1. Mean recognition results on contaminated test data.

K K-SVD ORDL L1-KSVD Proposed

USPS
2 0.764 0.804 0.826 0.844
3 0.775 0.819 0.845 0.856
4 0.788 0.824 0.851 0.870

MNIST
2 0.677 0.696 0.719 0.792
3 0.649 0.690 0.722 0.797
4 0.649 0.669 0.726 0.800

Table 2. Mean recognition results on outlier free test datasets.

K K-SVD ORDL L1-KSVD Proposed

USPS
2 0.805 0.824 0.852 0.857
3 0.826 0.841 0.870 0.883
4 0.837 0.854 0.879 0.895

MNIST
2 0.761 0.796 0.820 0.845
3 0.760 0.813 0.849 0.864
4 0.756 0.823 0.865 0.878

the outliers while learning a set of clean representative atoms
leading to a higher overall recognition accuracy.

5. CONCLUSION

In this paper we propose a robust dictionary learning algo-
rithm using a loss function developed from α-divergence
which guarantees stability of inference even for relatively
large deviations from the Gaussian nominal noise model.
The weighting function appearing during derivation of the
solution down-weights high amplitude residuals, thus dimin-
ishing their effect on the dictionary estimate. Performance
of the proposed algorithm is compared with state-of-the-art
quadratic (`2) and `1-norm based DL methods on digit recog-
nition application, highlighting its superior performance.

K-SVD ORDL

L1-KSVD Proposed

Fig. 3. Recovered dictionaries from MNIST dataset.
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