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ABSTRACT

The Mutual Information (MI) is an often used measure of
dependency between two random variables utilized in informa-
tion theory, statistics and machine learning. Recently several
MI estimators have been proposed that can achieve paramet-
ric MSE convergence rate. However, most of the previously
proposed estimators have high computational complexity of
at least O(N?). We propose a unified method for empirical
non-parametric estimation of general MI function between
random vectors in R? based on N ii.d. samples. The re-
duced complexity MI estimator, called the ensemble depen-
dency graph estimator (EDGE), combines randomized locality
sensitive hashing (LSH), dependency graphs, and ensemble
bias-reduction methods. We prove that EDGE achieves op-
timal computational complexity O(N), and can achieve the
optimal parametric MSE rate of O(1/N) if the density is d
times differentiable. To the best of our knowledge EDGE is
the first non-parametric MI estimator that can achieve paramet-
ric MSE rates with linear time complexity. We illustrate the
utility of EDGE for the analysis of the information plane (IP)
in deep learning. Using EDGE we shed light on a controversy
on whether or not the compression property of information
bottleneck (IB) in fact holds for ReLu and other rectification
functions in deep neural networks (DNN).

1. INTRODUCTION

The Mutual Information (MI) is an often used measure of de-
pendency between two random variables or vectors [1], and it
has a wide range of applications in information theory [1] and
machine learning [2, 3]. Non-parametric MI estimation meth-
ods have been studied that use estimation strategies including
KSG [4], KDE [5] and Parzen window density estimation [6].
The performance of these estimators has been evaluated and
compared based on both empirical studies [7] and asymptotic
analysis [8]. Recently several MI estimators have been pro-
posed that can achieve parametric MSE rate of convergence.
For example, in [9] a KDE plug-in estimator for Rényi di-
vergence and mutual information achieves the MSE rate of
O(1/N) when the densities are at least d times differentiable.
Another KDE based mutual information estimator was pro-
posed in [8] that can achieve the MSE rate of O(1/N) when
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the densities are d/2 times differentiable. Recently Moon et
al [10] and Gao et al [11] respectively proposed KDE and
KNN based MI estimators for random variables with mixtures
of continuous and discrete components. Most of these esti-
mators, however, have high computational cost and require
knowledge of the density support boundary.

In this paper we propose a reduced complexity MI estima-
tor called the ensemble dependency graph estimator (EDGE).
The estimator combines randomized locality sensitive hash-
ing (LSH), dependency graphs, and ensemble bias-reduction
methods. A dependence graph is a bipartite directed graph
consisting of two sets of nodes V' and U. The data points are
mapped to the sets V and U using a randomized LSH function
H that depends on a hash parameter €. Each node is assigned
a weight that is proportional to the number of hash collisions.
Likewise, each edge between the vertices v; and u; has a
weight proportional to the number of (X}, Y}) pairs mapped
to the node pairs (v;, u; ). For a given value of the hash parame-
ter €, a base estimator of MI is proposed as a weighted average
of non-linearly transformed of the edge weights. The proposed
EDGE estimator of MI is obtained by applying the method
of weighted ensemble bias reduction [10, 12] to a set of base
estimators with different hash parameters. This estimator is a
non-trivial extension of the LSH divergence estimator defined
in [13]. LSH-based methods have previously been used for
KNN search and graph constructions problems [14, 15], and
they result in fast and low complexity algorithms.

Recently, Shwartz-Ziv and Tishby utilized MI to study
the training process in Deep Neural Networks (DNN) [16].
Let X, T and Y respectively denote the input, hidden and
output layers. The authors of [16] introduced the information
bottleneck (IB) that represents the tradeoff between two mutual
information measures: I(X,7T) and I(T,Y). They observed
that the training process of a DNN consists of two distinct
phases; 1) an initial fitting phase in which I(T,Y") increases,
and 2) a subsequent compression phase in which I(X,T)
decreases. Saxe et al in [17] countered the claim of [16],
asserting that this compression property is not universal, rather
it depends on the specific activation function. Specifically,
they claimed that the compression property does not hold for
ReLu activation functions. The authors of [16] challenged
these claims, arguing that the authors of [17] had not observed
compression due to poor estimates of the MI. We use our
proposed rate-optimal ensemble MI estimator to explore this
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controversy, observing that our estimator of MI does exhibit
the compression phenomenon in the ReLU network studied
by [17]. Our contributions are as follows:

e To the best of our knowledge the proposed MI estimator
is the first estimator to have linear complexity and can
achieve the optimal MSE rate of O(1/N).

e The proposed MI estimator provides a simplified and
unified treatment of mixed continuous-discrete variables.
This is due to the hash function approach that is adopted.

e EDGE is applied to IB theory of deep learning, and
provides evidence that the compression property does
indeed occur in ReLu DNNSs, contrary to the claims
of [17].

The rest of the paper is organized as follows. In Section2, we
introduce the general definition of MI and define the depen-
dence graph. In Section 3, we introduce the hash based MI
estimator and give theory for the bias and variance. In section
4 we introduce the ensemble dependence graph MI estimator
(EDGE) and show how the ensemble estimation method can
be used to improve the convergence rates. Finally, in Section 5
we provide numerical results as well as study the IP in DNNs.

2. MUTUAL INFORMATION

In this section, we introduce the general mutual information
function based on the f-divergence measure. Then, we define
a consistent estimator for the mutual information function.
Consider the probability measures P and ) on a Euclidean
space X. Let g : (0,00) — R be a convex function with
g(1) = 0. The f-divergence between P and () can be defined
as follows [18,19].

D(PIQ) =Eals( 5] 0

Mutual Information: Let X and ) be Euclidean spaces and
let Pxy be a probability measure on the space X x ). For
any measurable sets A C X and B C ), we define the
marginal probability measures Px (A) := Pxy (A x )) and
Py (B) := Pxy (X x B). Similar to [11, 18], the general MI
denoted by I(X,Y) is defined as

dPxy
2
dPxvy

where 7523~ is the Radon-Nikodym derivative, and g :
(0,00) — Ris, as in (1) a convex function with g(1) = 0.
Shannon mutual information is a particular cases of (1) for
which g(z) = zlog z.

D(Pxvy||PxPy) =

Fig. 1. Sample dependence graph with 4 and 3 respective
distinct hash values of X and Y data jointly encoded with
LSH, and the corresponding dependency edges.

2.1. Dependence Graphs

Consider N i.i.d samples (X;,Y;), 1 < i < N drawn from the
probability measure Pxy-, defined on the space X x ). Define
the sets X = {X1,Xs,...,Xn}and Y = {¥1,Ys,....,Yn }.
The dependence graph G(X,Y) is a bipartite graph, consisting
of two sets of nodes V' and U with cardinalities denoted as |V|
and |U|, and the set of edges F¢. Each point in the sets X and
Y is mapped to the nodes in the sets U and V, respectively,
using the hash function H, described as follows.

A vector valued hash function H is defined in a similar
way as defined in [13]. First, define the vector valued hash
function H; : RY — 74 as

Hy(z) =[hi(z1), ha(z2), ..., hi(2a)], 3)

where xz; denotes the ith component of the vector z. In (3),
each scalar hash function hq(z;) : R — Z is given by

ho(z:) = V +bJ , @)

€

for a fixed € > 0, where |y| denotes the floor function (the
smallest integer value less than or equal to y), and b is a
fixed random variable in [0, €]. Let F := {1,2, .., F'}, where
F := cyg N and cp is a fixed tunable integer. We define a
random hash function H, : Z¢ — F with a uniform density
on the output and consider the combined hashing function

H(z) := Hy(Hy(x)), &)

which maps the points in R to F.

H(x) reveals the index of the mapped vertex in G(X,Y).
The weights w; and w; corresponding to the nodes v; and u;,
and w; ;, the weight of the edge (v;, u;), are defined as follows.

Ni; N

— = i = . (6
w. w Wij N, (6)
where N; and M) respectively are the the number of hash col-
lisions at the vertices v; and u;, and N;; is the number of joint
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collisions of the nodes (X4, Y) at the vertex pairs (v;, u;).
The number of hash collisions is defined as the number of
instances of the input variables map to the same output value.
In particular,

Nij = #{(Xk,Yk) S.t H(Xk) = ¢ and H(Yk) = ]} 7

Fig. 1 represents a sample dependence graph. Note that the
nodes and edges with zero collisions do not show up in the
dependence graph.

3. THE BASE ESTIMATOR OF MI
3.1. Assumptions
The following are the assumptions we make on the probability
measures and g:
A1l. The support sets X and ) are bounded.
A2. The following supremum exists and is bounded:

dPxy
oy ) =
A3. Let xp and z¢ respectively denote the discrete
and continuous components of the vector x. Also let
fxe(xe) and px,(xp) respectively denote density and
pmf functions of these components associated with the
probability measure Pyx. The density functions fx.(z¢),
fyveWe), fxeve(ze,ye), and the conditional densities

ch\XD (zclrp), fYc|YD (yelyp)s chYc|XDYD (zc,yclzp,yp

are Holder continuous.

Holder continuous functions: Given a support set X, a
function f : X — R is called Holder continuous with parame-
ter 0 < v < 1, if there exists a positive constant G ¢, possibly
depending on f, such that for every x # y € X,

|fy) — f(@)| < Gflly — || ®)

A4. Assume that the function g in (2) is Lipschitz contin-
uous; i.e. g is Holder continuous with v = 1.

3.2. The Base Estimator of MI

For a fixed value of the hash parameter ¢, we propose the
following base estimator of MI (2) function based on the de-
pendence graph:

I(X,Y) = Z wiw};g(wij) 5 ©))

eij€ba

where the summation is over all edges e;; : (v; — u;) of
G(X,Y) having non-zero weight and §(z) := max {g(x),U}.

When X and Y are strongly dependent, each point X},
hashed into the bucket (vertex) v; corresponds to a unique hash
value for Y}, in U. Therefore, asymptotically w;; — 1 and the
mutual information estimation in (9) takes its maximum value.
On the other hand, when X and Y are independent, each point
X, hashed into the bucket (vertex) v; may be associated with
different values of Y}, and therefore asymptotically w;; — w;
and the Shannon MI estimation tends to 0.

3.3. Convergence Rates

In the following theorems we state upper bounds on the bias
and variance rates of the proposed MI estimator (9). The
proofs are given in appendices A and B of the arXiv version
[20]. We define the notations B[T'] = E[T'] — T for bias and
V[T = E[T?] — E[T]? for variance of T. The following
theorem states an upper bound on the bias.

Theorem 3.1. Let d = dx + dy be the dimension of the
Jjoint random variable (X,Y). Under the aforementioned
assumptions AI-A4, and assuming that the density functions in
A3 have bounded derivatives up to order q > 0, the following
upper bound on the bias of the estimator in (9) holds

~ O(ny)ﬁ’O(ﬁ), q=20
B[I(X,Y)} = q N

i:1016 +O(€ )+O(N€d) q=>1,

(10)

where ¢ is the hash parameter in (4), v is the smoothness
parameter in (8), and C; are real constants.

In (10), the hash parameter, € needs to be a function of N
to ensure that the bias converges to zero. For the case of ¢ = 0,

the optimum bias is achieved when € = (%)W(WH). When

i)l/(l-&-d).

1 > 1, the optimum bias is achieved for ¢ = ( N

Theorem 3.2. Under the assumptions AI1-A4 the variance of
the proposed estimator can be bounded as VP\(X, Y)} <

O(%) Further, the variance of the variable w;; is also upper
bounded by O(1/N).

4. ENSEMBLE DEPENDENCE GRAPH ESTIMATOR
(EDGE)

Given the expression for the bias in Theorem 3.1, the ensem-
ble estimation technique proposed in [12] can be applied to
improve the convergence rate of the MI estimator (9). Assume
that the densities in A3 have continuous bounded derivatives
up to the order g, where ¢ > d. Let T := {t1,...,tr} be a
set of index values with ¢; < ¢, where ¢ > 0 is a constant.
Let €(t) := tN~1/2¢_ For a given set of weights w(t) the
weighted ensemble estimator is then defined as

I, = Z w(t)fe(t)a

teT

(1)

where IAe(t) is the mutual information estimator with the pa-
rameter €(¢). Using (10), for ¢ > 0 the bias of the weighted
ensemble estimator (11) takes the form

- S ; ¢ 1
i=1 teT 12

Given the form (12), as long as 7' > ¢q, we can select
the weights w(t) to force to zero the slowly decaying terms
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Fig. 2. MSE comparison of EDGE, EDKE and KSG Shannon
MI estimators. X is a 2D Gaussian random variable with unit
covariance matrix. Y = X + aNy, where Ny is a uniform
noise. The MSE rates of EDGE, EKDE and KSG are compared
for various values of a.

in (12), i.e. >, w(t)t/¢ = 0 subject to the constraint
that) .. w(t) = 1. However, T" should be strictly greater
than ¢ in order to control the variance, which is upper bounded
by the euclidean norm squared of the weights w. In particular
we have the following theorem (the proof is given in Appendix
C of the arXiv version [20]):

Theorem 4.1. For T > d let wq be the solution to:

min o],

subject to Zw(t) =1,
teT
dwt)t' =0ieNi<d (13
teT

Then the MSE rate of the ensemble estimator I, is O(1/N).

5. EXPERIMENTS

We first use simulated data to compare the proposed estimator
to the competing MI estimators Ensemble KDE (EKDE) [10],
and generalized KSG [11]. Both of these estimators work on
mixed continuous-discrete variables.

Fig. 2, shows the MSE estimation rate of Shannon MI
between the continuous random variables X and Y having the
relation Y = X + aNy, where X is a 2D Gaussian random
variable with the mean [0, 0] and covariance matrix C' = I5.
Here I; denote the d-dimensional identity matrix. Ny is a
uniform random vector with the support Ny = [0, 1] x [0, 1].
We compute the MSE of each estimator for different sample
sizes. The MSE rates of EDGE, EKDE and KSG are compared
for a = 1/5. Further, the MSE rate of EDGE is investigated for
noise levels of a = {1/10,1/5,1/2,1}. As the dependency
between X and Y increases the MSE rate becomes slower.

Next, we use EDGE to study the information bottleneck in
DNNs. Fig. 3 represents the information plane of a DNN with
4 fully connected hidden layers of width 784 — 1024 — 20 —
20 — 20 — 10 with tanh and ReLU activations. The network
is trained with Adam optimization with a learning rate of

35
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Fig. 3. Information plane estimated using EDGE for a neural
network of size 784 — 1024 — 20 — 20 — 20 — 10 trained on the
MNIST dataset with tanh (top) and ReL.U (bottom) activations.

0.003 and cross-entropy loss functions to classify the MNIST
handwritten-digits dataset. We repeat the experiment for 20
iterations with different randomized initializations and take the
average over all experiments. In both cases of ReLU and tanh
activations we observe compression in all of the hidden layers.
However, the amount of compressions is different for ReLU
and tanh activations. The average test accuracy in both of these
networks are around 0.98. This network is the same as the one
studied in [17], for which it is claimed that no compression
happens with a ReLU activation. The base estimator used
in [17] provides KDE-based lower and upper bounds on the
true MI [21]. According to our experiments (not shown) the
upper bound is in some cases twice as large as the lower bound.
In contrast, our proposed ensemble method estimates the exact
mutual information with significantly higher accuracy. More
experiments on simulated and real datasets are provided in the
arXiv version [20].

6. CONCLUSION

In this paper we proposed a fast non-parametric estimation
method for MI based on random hashing, dependence graphs,
and ensemble estimation. Remarkably, the proposed estima-
tor has linear computational complexity and attains optimal
(parametric) rates of MSE convergence. We provided bias
and variance convergence rate, and validated our results by
numerical experiments.
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