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ABSTRACT

Language graph learning is an important task with many
applications such as text classification, link prediction and
community detection. One of the challenges in this domain is
finding an efficient way to learn and encode graph into a low
dimensional embedding. In this paper, a novel DeepWalk-
assisted Graph PCA (DGPCA) method is proposed for pro-
cessing language network data represented by graphs. This
method can generate a precise text representation for nodes
(or vertices) in language networks. Unlike other existing
work, our learned low dimensional vector representations
add flexibility in exploring vertices’ neighborhood informa-
tion, while reducing noise contained in the original data. To
demonstrate the effectiveness, we use DGPCA to classify
vertices that contain text information in three language net-
works. Experimentally, DGPCA is shown to perform well on
the language datasets in comparison to several state-of-the-art
benchmarking methods.

Index Terms— graph embedding, natural language pro-
cessing, network representation learning

1. INTRODUCTION

Real-world network data such as social networks, linguistic
(word co-occurrence) networks and communication networks
can be modeled as graphs. Graph data allow relational knowl-
edge about interacting entities to be stored and accessed effi-
ciently. Analyzing these graph networks can provide signifi-
cant insights into community detection [1], behavior analysis
and many other useful applications. Graph analysis has been
widely used in node classification, link prediction and clus-
tering. In this paper, we study the problem of node (or ver-
tex) prediction in language networks. Node prediction deals
with assigning labels to each vertex based on vertex contents
and link structures. Various techniques have been proposed
to solve this problem. The Graph-based Recurrent Neural
Network (GRNN) model [2] offers the state-of-the-art perfor-
mance among all the techniques [3]. However, training neural
network models is time consuming and hardware demanding
due to the fact that the training process aims to find thousand
or even millions of parameters using back propagation (BP)
[4]. Neural network models are also sensitive to adversarial
attacks [5] and overfitting. Therefore, we aim to find an al-

ternative that has similar or better performance but demands
much less training time.

Language network data often come in high-dimensional
irregular form. This makes them more difficult to analyze
than the traditional low-dimensional corpora data. Principal
component analysis (PCA) is one of the most widely used
techniques for dimensionality reduction [6] and data analysis.
However, most PCA-based concepts are defined for signals
lying in the Euclidean space. They are not directly applica-
ble to graph data. In addition, real-world network data can be
corrupted by stochastic or deterministic noise. For example,
in collaborative filtering, collected user ratings could contain
noise [7] since the data collection process might not be prop-
erly controlled. To deal with noise in the network data, we de-
velop a new graph PCA method where we removes the noise
term. The new method can extract the low-rank and sparse
term of the original data so the learned representation is more
robust against noise.

There are two main contributions in this research. First,
we developed a framework that combines matrix factoriza-
tion based DeepWalk with robust PCA on graphs to gener-
ate a more accurate vector representation for language net-
works. The dimension of the learned vector representation is
reduced compared to the original dimension to allow fast pro-
cessing. We call it the DeepWalk-assisted Graph PCA (DG-
PCA) method. Second, to the best of our knowledge, this is
the first work that applies a noise term to the robust graph
PCA method so as to reduce errors and increase node pre-
diction accuracy in language networks. We evaluate the pro-
posed DGPCA method on three language network datasets.
DGPCA offers state-of-the-art performance in conducted ex-
periments.

The rest of this paper is organized as follows. We first
introduce the problem of interest and explain how language
networks are represented. Then a matrix factorization based
DeepWalk algorithm is presented to capture the structure of
the original network, especially on its structure and content
information. Next, we present the DGPCA method that brings
the merits of DeepWalk and the graph PCA together. The ac-
curacy and runtime of the proposed method is demonstrated
by experimental results and analysis. Finally, concluding re-
marks are given.
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Fig. 1: The system diagram of the proposed DGPCA method.

2. GRAPH NETWORK LEARNING

The primary input to our representation learning method is a
language network represented by a graph G = (V,E). This
graph consists of a set of vertices, V = {v1, v2, ..., vn}, and
a set of edges, E = {ei,j}, where edge ei,j connects vertex
vi to vertex vj . Graph networks are usually represented by an
adjacency matrix or a derived vector space representation [8].
The adjacency matrixA of graphG contains the non-negative
weights associated with each edge, aij ≥ 0. If vi and vj are
not directly connected to one another, aij = 0. For undirected
graphs, aij = aji for all 1 ≤ i ≤ j ≤ n . The goal is to use
the information in the graph to find Xi = {x1, x2, ..., xn},
the feature vector associated with vertex vi, and li (li ∈ L the
set of all labels), the label or class that vi is assigned to. The
node prediction task attempts to find an appropriate label for
any vertex vt so that the probability of given vertex vk for one
classification is maximized.

However, obtaining an accurate vector representation is
challenging because choosing which properties to embed is
not easy given the plethora of distance metrics and topolog-
ical properties for graphs. In addition, finding the optimal
dimension for the representation is difficult. Many networks
are large, and most graph data lie in a space of hundreds-to-
thousands dimensions or even more. Therefore, an embed-
ding method should also be scalable. To deal with the curse
of dimensionality, we want to embed the data in a subspace
of lower dimension. In our method, we first apply matrix
factorization based DeepWalk to obtain the vertex representa-
tion with dimension reduced using PCA. Then robust PCA on
graph is used with the noise term removed for language graph.
The overall work flow of our method is shown in Figure 1.

2.1. DeepWalk-based Vertex Representation

DeepWalk [9] is one of the most widely used network rep-
resentation learning methods for graph embedding. In Deep-
Walk, a target vertex, vi, is said to belong to a sequence S =
{v1, ..., v|s|} sampled from random walk if vi can reach any

vertex in S within a certain number of steps. The set of ver-
tices, Vs = {vi−t, ..., vi−1, vi+1, ..., vi+t}, is the context of
center vertex vi with a window size of t. DeepWalk aims
to maximize the average logarithmic probability of all vertex
context pairs in a random walk sequence S using the follow-
ing equation:

1

|S|

|S|∑
i=1

∑
−t≤j≤t,j 6=0

log p(vi+j |vi), (1)

where p(vj |vi) is calculated using the softmax function. It is
proven that DeepWalk is equivalent to factoring a matrix [10],
M ∈ R|V |×|V |, via:

M =W ᵀ ×H, (2)

where each entry in Mij is the logarithm of the average prob-
ability that vertex vi can reach vertex vj in a fixed number of
steps. W ∈ Rk×|V | is the vertex representation for matrix
factorization, and the information in H ∈ Rk×|V | is rarely
utilized in the classical DeepWalk model. Homophily, Struc-
ture, and Content Augmented Network Representation Learn-
ing (HSCA) [11] is an improvement upon the matrix factor-
ization based DeepWalk model TADW [10], which uses Skip-
Gram and hierarchical Softmax to learn a distributed word
representation. This methods factorize M into three matri-
ces: W ∈ Rk×|V |, H ∈ Rk×ft and text features T ∈ Rft×|V |
as shown in equation 3.

M =W ᵀ ×H × T, (3)

Then, W and HT are concatenated as the representation for
vertices followed by a PCA step that reduces the dimension
for M .

2.2. Graph Principal Component Analysis (GPCA)

Principal Component Analysis (PCA) has been widely used
in dimensionality reduction. PCA uses orthogonal transfor-
mation to convert variables into linearly uncorrelated princi-
pal components. For input data X of dimension n × p, PCA
generates a linear subspace of dimension n × d , where d
smaller than p and all the data lie close to the original data in
Euclidean distance.

Robust PCA on graphs [12] has the advantage of elim-
inating outliers by recovering low-rank matrix L from cor-
rupted data M . It has been used in many applications such as
video surveillance, face recognition, ranking and collabora-
tive filtering. However, its application to language networks
is rarely studied. A graph network data can be decomposed
intoL ∈ Rp×n and S ∈ Rp×n, whereL is the low rank matrix
and S is the sparse matrix. If we do not know dimensions of
L and S, we need an efficient way to recover the low-rank and
sparse components accurately. Classical principal component
analysis finds the best rank-k estimate of L by minimizing
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||X − L|| subject to rank(L) ≤ k. Principal Component
Pursuit (PCP) recovers low rank matrix L and sparse matrix
S by solving min||L|| + λ||S||1, where L + S = M , where
M is the matrix contains the column vectors of the all the data
points. All of them attempt to recover low-rank representation
L from corrupted data. However, robust PCA assume that the
error is strictly sparse, it does not consider small denser errors.
For language networks, we are also concerned about column-
wise corruption in the original data rather than sparse errors.
Therefore, we need to incorporate the sense noise factor in
PCA on graphs.

2.3. DeepWalk-Assisted Graph PCA (DGPCA)

In the DGPCA model, the original data matrix is first factor-
ized into W ,H and T using the objective function:

min
W,H
||M −W ᵀHT ||2F +

λ

2
(||W ||2F + ||H||2F )+

µ(R1(W ) +R2(H)).

(4)

The first term aims to minimize the matrix factorization error
of DeepWalk. The second term imposes the low-rank con-
straint on W and H , and uses λ

2 to control the trade-off. The
last regularization term enforces the structural homophily be-
tween connected nodes in the network. The regularization
term R(W,H) makes connected nodes close to each other in
the learned network representation. R(W,H) is defined as:

R(W,H) =
1

4

|V |∑
i=1,j=1

Ai,j ||
[
wi
Hti

]
−
[
wj
Htj

]
||22 (5)

In the equations above, ||.||2 is the matrix l2 norm and ||.||F
is the matrix Frobenius form. Then, W and HT are concate-
nated as the representation vector for each vertex, then the
dimension of the vector is further reduce using PCA. In the
Graph PCA step, we use the new observation model:

M = L+ S +N, (6)

whereN is the perturbation and error term. It is used to repre-
sent noise contained in the original dataset. To make it more
general, we have

M =W1(L) +W2(S) +W3(N),

where W1, W2 and W3 are known linear maps [13]. To re-
cover matrices L and S, our proposed model solves the fol-
lowing optimization problem:

minL,S(||L||∗ + λ||S||1,2) (7)

subject to:
||M − L− S||F ≤ δ (8)

where : ||.||∗ is the nuclear norm ||.||1,2 is the sum of l2 norm
of the columns of the matrix, and ||.||2, ||.||F are the l2 norm
and the Frobenius norm of matrices, respectively, and δ is the
bound on the noise term.

After applying Graph PCA to the new representation us-
ing Equation (7) and the constrain in Equation (8), we can
obtain low rank representation L, sparse representation S and
dense noise N . For the final representation, we set X = L
with the noise terms removed. For the classification task, we
use a semi-supervised classifier, known as the Transductive
SVM (TSVM) [14], to test our method.

3. EXPERIMENTS

The three datasets are split into training and testing sets with
proportions varying from 70% to 90%. All optimization al-
gorithms converge within 50 iterations on the training data.

3.1. Datasets

To evaluate the performance of the proposed DGPCA method,
we evaluated its classification accuracy using the following
three datasets.

• Citeseer: is a citation indexing dataset consisting of
academic literatures from six different categories with
3,312 documents and 4,723 links [15].

• Cora: consists of 2,708 scientific publications of seven
different classes with 5,429 links that indicate citation
relations among all documents [16].

• WebKB: It contains seven classes of web pages col-
lected from computer science departments. [17].

3.2. Benchmarking Methods

We compare the DGPCA method with the following three
benchmarking methods.

• Logistic Regression (LR): It uses a logistic regression
model to predict the label of each vertex based on its
attribution [18].

• Graph-based Recursive Neural Network (GRNN): It
first builds a tree from the graph using breath-first-
search method. Then applies long short-term memory
(LTSM) [19] based Recursive Neural Network (RNN)
[20] model to predict vertex label.

• Text-associated Deep Walk (TADW): It incorporates
text features of vertices using matrix factorization for
vertex classification.

• Homophily, Structure, and Content Augmented Net-
work Representation Learning (HSCA): It is improved
upon TADW with a regularization term.
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Fig. 2: Comparison of four methods on three data sets (from left to right: Citeseer, Cora and WebKB), where the x-axis is the
percentage of training data and the y-axis is the average Macro-F1 score.

Table 1: Comparison of run-time of DGPCA and GRNN on
three data sets

Training Percentage 70% 75% 80% 85% 90%

DGPCA
Citeseer 116.04 107.07 109.00 107.88 114.08
Cora 83.91 80.73 79.72 81.33 84.22
WebKB 45.47 42.55 46.55 46.51 47.46

GRNN
Citeseer 721.4 775.41 822.97 877.27 929.42
Cora 325.46 347.66 368.1 391.83 412.01
WebKB 121.35 134.15 142.91 153.30 148.66

The run time are recorded in second (s)

3.3. Experimental Results

The Macro-F1 scores of all four methods on the three datasets
are compared in Figure 2. DGPCA consistently outper-
forms all other three benchmarking methods. GRNN has the
second-best performance. By comparing the performance of
our method and GRNN, we see that DGPCA has a gain up to
6.5%, 7.5% and 4.1% for Citeseer, Cora and WebKB, respec-
tively. The improvement is the highest for the Cora dataset.
In the Cora dataset, neighboring vertices tend to share the
same label. It means that labels are closely correlated among
near neighbors. We see from accuracy comparison that our
DGPCA method captures the short range information very
well while reducing noise in the original data.

3.4. Run-time Analysis

Real-world network data are usually sparse. For this rea-
son, we will use the approximation O(|V |) ≈ O(|E|). The
computation of matrix M has time complexity of O(|V |2)
becuase M is approximated using (A + A2)/2, where A is
the transition matrix using PageRank [21]. The optimization
of matrix factorization takes O(nnz(M) + |V |k2) time [10],
where nnz(·) is the non-zero entries of M and k is the rank.
In the PCA step, the runtime is reduced to O(k3) [22], where
k is smaller than |V |. Thus, the overall runtime is O(|V |k2).

We use GRNN as the benchmarking method since it is
one of the state-of-the-art machine learning methods for ver-
tex classification. It also gives the second-best accuracy. The
network conversion in GRNN uses the breadth-first-search
(BFS) method to convert a graph to a tree. This conversion
step has time complexity ofO(bd), where b is the max branch-
ing factor of the tree and d is the depth. In each training step,
the time complexity in updating a weight is O(1). The over-
all LSTM algorithm has an update complexity of O(W ) per
time step, where W is the number of weights to be updated.
For the whole training process, the run-time complexity is
O(W × i× e), where i is the input length and e is the number
of epochs. Then, the overall time complexity for GRNN is
O(bd +Wie) [23]. The actual running time for each data set
of the two methods is shown in Table 1. The CPU run-time
shows that our method is faster than GRNN by saving 83.9%,
74.2% and 62.5% training time on the average for Citeseer,
Cora and WebKB, respectively.

4. CONCLUSION AND FUTURE WORK

A novel vertex classification method, which applies Graph
PCA to graph data processed by matrix factorization based
DeepWalk, was proposed in this work. The proposed DG-
PCA method can capture the neighborhood information of a
node well and decrease noise in the original data. The rep-
resentation learning for language graph data used in DGPCA
is not only accurate, but also efficient. The effectiveness of
the DGPCA method was demonstrated by experimental re-
sults on three language datasets with different training ratios.
In the future, we would like to apply the proposed method-
ology to networks of a larger scale and higher diversity such
as social network data. While our proposed method is highly
scalable in theory, there is still significant work to be done in
embedding massive datasets with billions of nodes and edges.
We would also like to extend our graph representation method
to operate on a wide range of other emerging application do-
mains.
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