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ABSTRACT

We consider the problem of inferring the conditional independence
graph (CIG) of both proper and improper, complex-valued, high-
dimensional multivariate Gaussian vectors. A p-variate complex
Gaussian graphical model (CGGM) associated with an undirected
graph with p vertices is defined as the family of complex Gaussian
distributions that obey the conditional independence restrictions im-
plied by the edge set of the graph. For real random vectors, consider-
able body of work exists, whereas that on proper complex Gaussian
graphical models (PCGGMs) is sparse, while that on ICGGMs is
non-existent. In this paper, we present a graphical lasso based penal-
ized log-likelihood approach for both PCGGMs and ICGGMs. An
alternating minimization algorithm is used to optimize the objective
functions. Numerical examples illustrate the proposed algorithms.

Keywords: Complex Gaussian graphical models; improper complex
Gaussian graphical models; undirected graph; graphical lasso.

1. INTRODUCTION

Graphical models provide a powerful tool for analyzing multivariate
data [1–3]. In a typical setting of an undirected graphical model,
the conditional dependency structure among p (real-valued) random
variables x1, x1, · · · , xp, (x = [x1 x2 · · · xp]

�), is represented
using an undirected graph G = (V, E), where V = {1, 2, · · · , p} =
[p] is the set of p nodes corresponding to the p random variables
xis, and E ⊆ [p] × [p] is the set of undirected edges describing
conditional dependencies among the components of x. The graph
G then is a conditional independence graph (CIG) where there is no
edge between nodes i and j (i.e., {i, j} �∈ E ) if and only if (iff)
xi and xj are conditionally independent given the remaining p-2
variables x�, � ∈ [p], � �= i, � �= j.

Real-valued Gaussian graphical models (RGGMs) are CIGs
where x is multivariate Gaussian. Suppose x has positive-definite
covariance matrix Σ with inverse covariance matrix (also known as
precision matrix or concentration matrix) Ω = Σ−1. Then Ωij , the
(i, j)-th element of Ω, is zero iff xi and xj are conditionally inde-
pendent. Such models for real-valued x have been extensively stud-
ied, and found to be useful in a wide variety of applications [4–9].
Given N samples of x, prior work can be classified into two cate-
gories: low-dimensional setting where p� N and p is “small,” and
high-dimensional setting where p� 1 and/or N is of the order of p.
In low-dimensions a focus is on edge exclusion tests [1, 2, 24–26],
to decide which set of edges out of total p(p − 1)/2 edges are in
E . In high-dimensions, the edge exclusion testing approach is not
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feasible or practical, so one estimates Ω directly under some sparsity
constraints; see [5, 8, 9, 29, 30] for RGGMs.

For complex-valued x, only the monograph [10], and more re-
cently [11], have studied such models, where x is assumed to be
proper complex and of low dimension. In the context of frequency-
domain formulation of graphical modeling of real-valued time series
in high-dimensional settings, proper complex-valued graphical mod-
els have been considered in [12, 14] using a neighborhood regres-
sion scheme, and in the form of penalized log-likelihood (graphical
lasso) in [13]. A significant application of graphical modeling of
real-valued random vectors has been for analysis of fMRI data [15],
to provide insights into the functional connectivity of different brain
regions [16]. It has been shown in [17,18] that complex-valued fMRI
data yields improved sensitivity in fMRI analysis compared to real-
valued fMRI data where the phase information, although collected,
is simply discarded. It turns our that fMRI data is improper complex-
valued [19, 20]. Prior work on ICGGMs is non-existent.

A complex-valued random vector x is said to be circular if ejθx
has the same probability distribution as x for all real θ [21], [22,
p. 53]. A complex-valued random vector x is said to be proper if
E{xx�} = E{x}E{x�} [22, p. 35], [23]. A circular x is proper
but converse is not necessarily true. A complex zero-mean Gaussian
x is proper if and only if it is circular [22, p. 53].

Relation to Prior Work: Prior work on ICGGMs is non-
existent. PCGGMs are considered implicitly (in the context of real
time series) in [12–14]. As in [5,13], we use penalized log-likelihood
as objective function, but solve it via alternating minimization based
on variable splitting and penalty, unlike [5, 13], who use ADMM
(alternating direction method of multipliers) [33].

In this paper, we present a graphical lasso based penalized log-
likelihood approach for both PCGGMs and ICGGMs. We review
some existing results in Sec. 2, and develop necessary and sufficient
conditions for xi and xj to be conditionally independent in ICG-
GMs in Sec. 3. In Sec. 4, we propose penalized log-likelihood based
objective functions for PCGGMs based on graphical lasso, and for
ICGGMs based on sparse group graphical lasso, respectively. An
alternating minimization algorithm is used to optimize the objective
functions. Numerical examples in Sec. 5 illustrate the proposed al-
gorithms.

2. PRELIMINARIES AND BACKGROUND

2.1. Real-Valued GGM (RGGM)

An RGGM associated with a simple undirected graph G = (V, E)
is defined as the family of p-variate real-valued Gaussian random
vectors x ∈ R

p, p = |V |, that obey the conditional independence
restrictions implied by the edge set E . We take V = [p] and x =
[x1 x2 · · · xp]

�, and in the corresponding graph G, each variable xi
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is represented by a node (i in V ), and associations between variables
xi and xj are represented by edges between nodes i and j of G.
Edge {i, j} ∈ E iff xi and xj are conditionally dependent given the
remaining p-2 variables.

RGGMs are CIGs where x is real multivariate Gaussian. Sup-
pose x is zero-mean with positive-definite covariance matrix Σ � 0,
denoted by x ∼ Nr(0,Σ), then its probability density function (pdf)
is

fx(x) =
e−

1
2

x�Σ−1x

(2π)p/2 |Σ|1/2 =
|Ω|1/2
(2π)p/2

e−
1
2
tr(xx�Ω) (1)

where we do not distinguish between a random vector/matrix and
the values taken by them in our notation (for simplicity). It is known
that Ωij , the (i, j)-th element of Ω (= Σ−1), is zero iff xi and xj

are conditionally independent [1, Proposition 5.2].

2.2. Proper Complex-Valued GGM (PCGGM)

Similarly, a PCGGM associated with an undirected graph G =
(V, E) is defined as the family of p-variate proper complex-valued
Gaussian vectors x ∈ C

p, p = |V |, that obey the conditional in-
dependence restrictions implied by the edge set E . We take x to be
a complex, proper, Gaussian random vector, with zero mean and
covariance Σ, i.e., x ∼ Nc(0,Σ), and we assume that Σ is posi-
tive definite. Therefore, E{x} = 0, E{xxH} = Σ ∈ C

p×p, and
E{xx�} = 0 [22, p. 35]. The pdf of x is

fx(x) =
e−xHΣ−1x

πp |Σ| =
|Ω|
πp

e−tr(xxHΩ) (2)

It is fairly common to refer to proper complex Gaussian vectors as
just complex Gaussian vectors [10]. However, since we are also in-
terested in the case where for x ∈ C

p, we do not necessarily have
E{xx�} = 0, following [22], we explicitly distinguish between
proper complex Gaussian vectors (E{xx�} = 0) and improper com-
plex Gaussian vectors (E{xx�} �= 0). A key result for PCGGMs is
that Ωij = [Ω]ij , the (i, j)-th element of Ω = Σ−1, is zero iff xi

and xj are conditionally independent [10, Theorem 7.1].

2.3. Improper Complex Gaussian Vectors

Given x = xr + jxi ∈ C
p, with real part xr and imaginary part xi,

define the augmented complex vector y and the real vector z as

y =
[

x� xH
]�

, z =
[

x�
r x�

i

]�
. (3)

The pdf of an improper complex Gaussian x is defined in terms of
that of the augmented z or y [22, Sec. 2.3.1]. Assume E{x} = 0,
and define Ruv = E{uv�} for (zero-mean) u, v ∈ R

p, and de-
fine the covariance matrix Ruv = E{uvH}, and the complementary
covariance matrix R̃uv = E{uv�} [22, Sec. 2.2], for zero-mean
u, v ∈ C

p. Then we have z ∼ Nr(0,Rzz) where

Rzz =

[
Rxrxr Rxrxi

Rxixr Rxixi

]
, Ryy =

[
Rxx R̃xx

R̃
∗
xx R∗

xx

]
= RH

yy .

(4)
Since z ∼ Nr(0,Rzz), its pdf is given by (assuming Rzz � 0)

fz(z) =
1

(2π)2p/2 |Rzz|1/2 exp

(
−1

2
z�R−1

zz z
)

. (5)

One can also express (5) as [22, Sec. 2.3.1]

fx(x) := fy(y) =
1

πp |Ryy|1/2 exp

(
−1

2
yHR−1

yy y
)

. (6)

For proper x, R̃xx = 0, and (6) reduces to

fx(x) =
e−

1
2

xHR−1
xx x− 1

2 (xHR−1
xx x)∗

πp |Rxx|1/2 |R∗
xx|1/2 . (7)

Since Rxx = RH
xx, |Rxx| = |R∗

xx|, (xHR−1
xx x)∗ = xHR−1

xx x, for
proper x, (7) has the familiar form used in (2).

3. IMPROPER COMPLEX GAUSSIAN GRAPHICAL
MODEL

An ICGGM associated with a simple undirected graph G = (V, E)
is defined as the family of p-variate complex-valued improper Gaus-
sian random vectors x ∈ C

p, p = |V |, V = [p], that obey the condi-
tional independence restrictions implied by the edge set E . However,
since an improper xj is specified in terms of two random variables
(real and imaginary parts of the random variable, or the variable
and its complex conjugate), in an ICGGM, in fact, each node cor-
responds to two random variables real(xj) and imag(xj). In the
notation of (6), conditional independence of improper xj and xk is
equivalent to

fxj ,xk | x
Ṽ
(xj , xk | xṼ ) = fxj | x

Ṽ
(xj | xṼ )fxk | x

Ṽ
(xk | xṼ ) (8)

where Ṽ = V \{j, k} and xṼ = [xi]i∈Ṽ =a column vector of
dimension |Ṽ |, composed of components of x associated with nodes
in Ṽ . By integrating out the unwanted variables on both sides of (8),
we then have

fu,v | x
Ṽ
(u, v | xṼ ) = fu | x

Ṽ
(u | xṼ )fv | x

Ṽ
(v | xṼ ) (9)

for any real scalars u, v that satisfy u ∈ {real(xj), imag(xj)}, v ∈
{real(xk), imag(xk)}.

In order to exploit some results in [1] pertaining to real-valued
GGMs (RGGMs) for testing the validity of (9) for a given ICGGM,
we will use the representation z in (3), and exploit a larger RGGM
corresponding to the given ICGGM G = (V, E). Consider an
RGGM Ḡ = (V̄ , Ē) associated with ICGGM G = (V, E), where
V̄ = [2p], vertix j for 1 ≤ j ≤ p represents the real part of improper
xj , real(xj), and vertix j + p represents imag(xj). For a given
edge {j, k}, define the set of four edges Ē (jk) as

Ē (jk) = {{j, k}, {j + p, k}, {j, k + p}, {j + p, k + p}} . (10)

If the edge {j, k} �∈ E , then we have edges Ē (jk) ∩ Ē = ∅, implying
relations (9) for all four possible values of pair (u, v). Since pair-
wise Markov property implies global Markov property for RGGMs
( [1, p. 131]), we can establish that given ICGGM G = (V, E)
with x ∈ C

p, and the associated RGGM Ḡ = (V̄ , Ē) with z =
[real(x�) imag(x�)]� ∈ R

2p,

{j, k} �∈ E ⇔ Ē (jk) ∩ Ē = ∅ . (11)

Let Rzz = E{zz�} � 0 and Ω̄ = R−1
zz . We are able to prove

Lemma 1.
Lemma 1. Consider an ICGGM G = (V, E) with x ∈ C

p

and V = [p], and the associated RGGM Ḡ = (V̄ , Ē) with
z = [real(x�) imag(x�)]� ∈ R

2p, V̄ = [2p], where vertix j
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for 1 ≤ j ≤ p represents the real part of improper xj , real(xj), and
vertix j+p represents imag(xj). Assume that Rzz = E{zz�} � 0.
Then ∀j, k ∈ V , j �= k, {j, k} �∈ E , i.e., xj and xk are conditionally
independent given xV \{j,k}, iff [Ω̄]�m = 0 ∀ {�,m} ∈ Ē (jk), where
Ω̄ = R−1

zz and Ē (jk) is defined in (10). •
Lemma 1 is the counterpart of [1, Prop. 5.2] pertaining to

RGGMs, and of [10, Theorem 7.1] pertaining to PCGGMs.

4. GRAPHICAL LASSO FOR HIGH-DIMENSIONAL
CGGMS

Given N samples x(t), t = 0, 1, · · · , N − 1, denoted by X, define

Σ̂ = 1
n

∑n−1
t=0 x(t)xH(t), and similarly ˆ̄Σ = 1

n

∑n−1
t=0 z(t)z�(t).

Here we investigate the case where p� 1 and/or N is of the order of
p. When p is large, it may not be feasible to test all p(p−1)/2 edges.

When p is large in comparison to N , Σ̂ or ˆ̄Σ may be ill-conditioned.
As noted in [5] (and by others, e.g., [8, 29]) in the context of real-
valued random vectors, one may need to use penalty terms to enforce
sparsity and to make the problem well-conditioned. Consider the
likelihood function (2) or (7) for x, and (5) for z. We wish to estimate
inverse covariance Ω or Ω̄. Given N i.i.d. realizations, we have the
log-likelihood (up to some constants)

ln fX(X) =
N

2

(
ln |Ω|+ ln |Ω∗| − tr(Σ̂Ω)− tr(Σ̂∗Ω∗)

)
(12)

= N
(
ln |Ω| − tr(Σ̂Ω)

)
, (13)

ln fZ(Z) = N ln |Ω̄| − tr(Z�ZΩ̄) . (14)

As an alternative to edge exclusion tests, one possible solution is to
maximize the log-likelihood (12) w.r.t. Ω (or Ω̄), and then threshold

elements of estimated Ω̂ (or ˆ̄Ω) to zero or nonzero. If [Ω̂]ij = 0, the

edge {i, j} �∈ E . If [ ˆ̄Ω]ij = 0 ∀{i, j} ∈ Ē (jk), the edge {i, j} �∈ E .
In general, one would obtain inverse covariance estimates with no
elements that are exactly equal to zero, and if one resorts to element-
by-element thresholding, choice of threshold level is unclear.

4.1. PCGGMs

A solution, following [8] (also [29,30]), is to impose a sparsity con-
straint. Instead of maximizing ln fX(X), maximize a penalized ver-
sion w.r.t. Hermitian Ω � 0

LPC(X) = ln fX(X)− λ ‖Ω‖1d , (15)

‖Ω‖1d =

p∑
l,m=1
l �=m

∣∣∣[Ω]lm

∣∣∣ = �1 norm of Ω without diagonal terms

where [Ω]lm denotes the (l,m)-th element of Ω ∈ C
p×p, and λ ≥

0 is a tuning parameter. This is the lasso penalty, leading to the
term graphical lasso [8, 29]. Notice that unlike the formulations
in [8,29,30] where Ω is real-valued, we have complex-valued Ω. So
we resort to Wirtinger calculus (complex differential calculus) [22,
Appendix 2], [31] coupled with corresponding definition of subd-
ifferential/subgradients [32], to minimize convex −LPC(X) w.r.t.
complex Ω using the necessary and sufficient KKT conditions for
a global optimum. Several approaches, such as ADMM [33, Sec.
6.5], or AM (alternating minimization) methods [34] based on vari-
able splitting and penalty techniques, are possible for minimization.
Some recent results [35] suggest that when both approaches are ap-
plicable, ADMM which requires dual variables, is inferior to the AM

method which is a primal-only method, in terms of computational
complexity and accuracy.

Consider minimization of − ln fX(X)+λ ‖Ω‖1 subject to Ω �
0. By variable splitting, we reformulate as

min
Ω,W

{N

2

[
tr(Σ̂Ω+ Σ̂∗Ω∗)− (ln(|Ω|) + ln(|Ω∗|))]+ λ ‖W‖1d

}
(16)

subject to W = Ω � 0 . (17)

Using the penalty method, consider the relaxed problem (ρ > 0 is
“large”)

min
Ω,W

{N

2
tr(Σ̂Ω+ Σ̂∗Ω∗)− N

2
(ln(|Ω|) + ln(|Ω∗|))

+ λ ‖W‖1d +
ρ

2
‖Ω −W‖2F .

}
(18)

Given the results Ω(i),W(i), of the ith iteration, in the (i + 1)st
iteration, an AM algorithm executes the following two updates:

(a) Ω(i+1) ← argminΩ Ja(Ω,Ω∗), Ja(Ω,Ω∗) := N
2
tr(Σ̂Ω+

Σ̂∗Ω∗)− N
2
(ln(|Ω|) + ln(|Ω∗|)) + ρ

2
‖Ω−W(i)‖2F

(b) W(i+1) ← argminW Jb(W), Jb(W) := λ ‖W‖1d +
ρ
2
‖Ω(i+1) −W‖2F

A necessary and sufficient condition for a global optimum in
update (a) is that the gradient of Ja(Ω,Ω∗) w.r.t. Ω∗, given by (20),
vanishes, with Ω = ΩH � 0:

0 =
∂Ja(Ω,Ω∗)

∂Ω∗ =
N

2
Σ̂H − N

2
(ΩH)−1 +

ρ

2
(Ω−W(i)) (19)

=
N

2
Σ̂− N

2
Ω−1 +

ρ

2
(Ω−W(i)) . (20)

The solution to (20) follows as in [33, Sec. 6.5]. Let VDVH de-
note the eigen-decomposition of the matrix Σ̂ − (ρ/N)W(i). Then
Ω(i+1) = VD̃VH where D̃ is the diagonal matrix with mth diagonal
element D̃mm = (N/(2ρ))(−Dmm +

√
D2

mm + 4ρ/N ). Notice
that Jb(W) is completely separable w.r.t. each pair (j, k) of matrix
elements, i.e., solve W

(i+1)
jk ← argminWjk Jbjk(Wjk), for each

(j, k), where Jbjk(Wjk) := λ 1j �=k|Wjk| + (ρ/2)|[Ω(i+1)]jk −
Wjk|2. A necessary and sufficient condition for a global optimum in
update (b) is that the subdifferential of Jbjk(Wjk) w.r.t. W ∗

jk, given
by (21), must contain 0:

0 ∈∂Jbjk(Wjk) = 1j �=k
λ1

2
t+

1

2
(Wjk − [Ω(i+1)]jk), (21)

t =

{
Wjk/|Wjk| if Wjk �= 0
∈ {u : |u| ≤ 1, u ∈ C} if Wjk = 0

(22)

This leads to the soft-thresholding solution ((a)+ := max(0, a))

[W(i+1)]jk =

{
[Ω(i+1)]jj if j = k

S([Ω(i+1)]jk, λ1/ρ) if j �= k
(23)

where

S([Ω(i+1)]jk, λ1/ρ) :=

(
1− λ1

ρ|[Ω(i+1)]jk|
)

+

[Ω(i+1)]jk .

(24)
By [34, Theorem 3.7], the iterative solution sequence Ω(i),W(i)

generated by the AM method converges to a global minimum.
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4.2. ICGGMs

In view of (11), we propose using a sparse-group lasso penalty to
maximize LIC(Z) w.r.t. Ω̄

LIC(Z) = ln fZ(Z)− P (Ω̄) , (25)

P (Ω̄) := λ1

2p∑
l,m=1
l �=m

|[Ω̄]lm|+ λ2

p∑
l,m=1
l �=m

‖vlm(Ω̄)‖2 , (26)

vlm(Ω̄) :=
[
[Ω̄]lm [Ω̄](l+p)m [Ω̄]l(m+p) [Ω̄](l+p)(m+p)

]�
(27)

where λ1, λ2 ≥ 0 are tuning parameters. In (25), an �1 penalty term
is applied to each off-diagonal element of Ω̄, and to the group of four
in (11). Recall that now we are dealing with real-valued augmented
random vector z ∈ R

2p. Using variable splitting and the penalty
method, consider

min
Ω̄,W

{
Ntr( ˆ̄ΣΩ̄)−N ln(|Ω̄|) + P (W) +

ρ

2
‖Ω̄−W‖2F

}
(28)

involving an AM algorithm with the following two updates:

(a) Ω̄(i+1) ← argminΩ̄ Ja(Ω̄), Ja(Ω̄) := Ntr( ˆ̄ΣΩ̄) −
N ln(|Ω̄|) + ρ

2
‖Ω̄ −W(i)‖2F

(b) W(i+1) ← argminW Jb(W), Jb(W) := P (W) +
ρ
2
‖Ω̄(i+1) −W‖2F

The solution to update (a) is as in Sec. 4.1. Let VDVH denote the

eigen-decomposition of the matrix ˆ̄Σ−(ρ/N)W(i). Then Ω̄(i+1) =

VD̃VH where D̃ is the diagonal matrix with mth diagonal element
D̃mm = (N/(2ρ))(−Dmm +

√
D2

mm + 4ρ/N ). Following [36]
(see also [5]), the solution to update (b) is given by

[W(i+1)]jk ={
[Ω̄(i+1)]jj if j = k

S([Ω̄(i+1)]jk, λ1/ρ)
(
1− λ2

ρ‖vjk(S(Ω̄(i+1),λ1/ρ))‖2

)
+

if j �= k

where [S(Ω, α)]jm = S([Ω]jm, α), defined in (24).

Fig. 1. A typical realization of true CIG, p =100.

5. SIMULATIONS

We start with p × p Ω̌ with all diagonal elements set to 1 and off-
diagonal elements equal to 0.5. With probability q and indepen-
dently, we set off-diagonal elements in the upper triangle of Ω̌ to

zero (taking care to set the corresponding elements in lower triangle
also to zero so that the resulting matrix Ω̂ is symmetric). Now set
Ω = Ω̂+βI with β picked to make Ω positive definite. This choice
of Ω is similar to one of the examples in [37]. Then approximately
100q% entries of Ω are null. With ΦΦH = Ω−1, we generate x =
Φw with w ∈ C

p as zero-mean, improper Gaussian with indepen-
dent components. Let v ∼ Nc(0, I). Then we set wl, the lth compo-
nent of w, as wl = real(vl) + j(0.9× real(vl) + 0.2× imag(vl)),
yielding improper complex Gaussian w. We generate N i.i.d. obser-
vations from x, with q = 0.95 to have approximately 95% entries
of Ω̄ (corresponding to z ∈ R

2p), as null, leading to a sparse graph
with only 5% of connected edges.

A typical realization of the graph is in Fig. 1 where only the
nodes which are connected to at least one other node, are shown. The
ROC curves are in Fig. 2 based on 100 runs. While the true graph
is an ICGGM, one can pretend that it can be modeled as a PCGGM
and then also use the method of Sec. 4.1. Results of both methods,
Sec. 4.1 and Sec. 4.2, are shown in Fig. 2. To generate the ROC,
having fitted Ω̄ to the data, one compares against a threshold η to
determine if a given edge {i, j} is connected or not: If ‖vij(Ω̄)‖2 ≥
η, then {i, j} ∈ E , else {i, j} �∈ E , and for PCGGM and Ω, we pick
{i, j} ∈ E if |[Ω]ij | = |Ωij | ≥ η, else {i, j} �∈ E . It is seen from
Fig. 2 that using impropriety properties does significantly improve
detection performance.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

significance level α

po
w

er

p=100

 

 

improper : N=100
proper : N=100
improper : N=75
proper : N=75
improper : N=50
proper : N=50

Fig. 2. Improper Gaussian, p =100, N =50, 75 or 100. ROC curves
based on treating the data as (i) proper complex Gaussian, using
(18) with λ =0.03, ρ =10, (labeled “proper”), or (ii) improper
complex Gaussian, using (28) with λ1 =0.03, λ2 =0.1, ρ =10,
(labeled “improper”). Based on 100 runs.

6. CONCLUSIONS

We considered the problem of inferring the conditional indepen-
dence graph of complex-valued, both proper and improper, multi-
variate Gaussian vectors in high dimensions. We first developed
necessary and sufficient conditions on elements of the inverse covari-
ance matrix Ω̄ of the real 2p-vector associated with improper com-
plex x, for xi and xj to be conditionally independent. Then we pro-
posed penalized log-likelihood based objective functions for PCG-
GMs based on graphical lasso, and for ICGGMs based on sparse
group graphical lasso, respectively. An alternating minimization al-
gorithm was used to optimize the objective functions. Numerical
examples were presented to illustrate the proposed algorithms.
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