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ABSTRACT

Multiview canonical correlation analysis (MCCA) looks for
shared low-dimensional representations hidden in multiple
transformations of common source signals. Existing MCCA
approaches do not exploit the geometry of common sources,
which can be either given a priori, or constructed from do-
main knowledge. In this paper, a novel graph-regularized (G)
MCCA is developed to account for such geometry-bearing in-
formation via graph regularization in the classical maximum-
variance MCCA model. GMCCA minimizes the distance
between the sought canonical variables and the common
sources, while incorporating the graph-induced prior of these
sources. To capture nonlinear dependencies, GMCCA is fur-
ther broadened to the graph-regularized kernel (GK) MCCA.
Numerical tests using real datasets document the merits of
G(K)MCCA in comparison with competing alternatives.

Index Terms— Dimensionality reduction, signal process-
ing over graphs, Laplacian regularization, multiview learning

1. INTRODUCTION

Multiview data collected from different transformations of
common signal(s) are typical in applications, such as multi-
camera surveillance systems, where single-view data do not
suffice for a comprehensive description of the common sig-
nal sources. In paper classification for instance, there are
three views representing any given paper: the title, keywords,
and its citations [1]. Learning with heterogeneous data from
different domains is often referred to as multiview learn-
ing, which is an emerging direction in machine learning [2].
Canonical correlation analysis (CCA) is a learning tool with
well-documented merits. It seeks linear transformations of
two datasets so that the correlation between the transformed
low-dimensional features is maximized [3]. Multiview (M)
CCA generalizes the vanilla CCA to cope with data from
more than two views [4], and enjoys popularity that grows
with the heterogeneity of sensing devices.

Graph-aware subspace learning methods have been widely
used in machine learning applications, such as dimensional-
ity reduction, clustering, classification, and data reconstruc-
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tion [5, 6]. Specifically, graph CCA accounts for the structural
information present in a common source [7], but it is limited
to analyzing two datasets. The geometric information of the
common sources has not been leveraged in the context of
MCCA.

Building upon but considerably going beyond our results
in [7], a novel graph-regularized (G) MCCA framework is
put forth here. GMCCA aims at minimizing the distance
between the low-dimensional representations of each view
and the common sources, while accounting for the statisti-
cal dependencies among these sources that are hidden in the
multiple views. Such dependencies may be available from
the given data, or can be deduced from correlations, which
are encoded in a graph and we invoke as graph regulariz-
ers of standard MCCA. Going beyond linear transformations,
we employ kernels along with a Tikhonov regularizer on the
low-dimensional representations to develop a novel graph-
regularized kernel (GK) MCCA tool. Interestingly, the so-
lutions of GMCCA and GKMCCA can be analytically found
by performing a single eigenvalue decomposition.

2. PRELIMINARIES

Consider M ≥ 2 datasets {Xm ∈ RDm×N}Mm=1 collected
from M views of the N common sources collected in the
matrix Š ∈ Rρ×N , with possibly ρ � minm {Dm}Mm=1.
Without loss of generality, assume that per dataset Xm has
been centered. MCCA looks for low-dimensional subspaces
{Um ∈ RDm×d}Mm=1 with d ≤ ρ, such that the difference be-
tween each pair of linear projections U>mXm is minimized.

To reveal the underpinnings of our approach, we outline
two popular MCCA formulations. The first, termed sum-of-
correlations (SUMCOR) MCCA [4], matches the pairs by

min
{Um}Mm=1

M−1∑
m=1

M∑
m′>m

∥∥U>mXm −U>m′Xm′
∥∥2
F

(1a)

s. to U>m
(
X>mXm

)
Um = I, m = 1, . . . ,M (1b)

where columns of Um are known as the loading vectors of
Xm, and projections {U>mXm} are the so-termed canoni-
cal variables, which can be viewed as low (d)-dimensional
approximations of the hidden sources in Š. However, when
M ≥ 3, problem (1) is provably NP-hard [8].
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Instead of minimizing the Euclidean distance between all
low-dimensional representation pairs, one can also explicitly
look for a common low-dimensional approximation of the
common source matrix S ∈ Rd×N , by solving [4]

min
{Um},S

M∑
m=1

∥∥U>mXm − S
∥∥2
F

(2a)

s. to SS> = I (2b)

which yields the so-termed maximum-variance (MAXVAR)
MCCA formulation. If all sample covariance matrices
{XmX>m}Mm=1 have full rank, then the columns of the S-
minimizer are given by the first d principal eigenvectors of∑M
m=1 X

>
m(XmX>m)−1Xm, while the Um-minimizers are

found as {Ûm = (XmX>m)−1XmŜ>}Mm=1 [9].

3. GRAPH-REGULARIZED MCCA

In a gamut of applications, the N common source columns
{ši}Ni=1 that form Š, may be nodal vectors residing on a graph
G comprising N nodes. Besides the given data {Xm}, such
structural prior knowledge can be exploited to better estimate
the canonical variables. Specifically for the present paper, this
extra information is encoded in a graph G and embodied in
the common low-dimensional approximation through a graph
regularization term. This section deals precisely with graph-
regularized MCCA.

Supposing that the graph G is undirected, its weighted ad-
jacency matrix W ∈ RN×N is symmetric, that is W = W>.
Letting di :=

∑N
j=1 wij with wij denoting the (i, j)-th en-

try of W, and the diagonal matrix D := diag({di}Ni=1) ∈
RN×N , the Laplacian of G is defined as LG := D −W.
Sources {ši}Ni=1 are assumed smooth over G, that is two vec-
tors (ši, šj) residing on connected nodes are also close in
the Euclidean distance sense. As explained in Sec. 2, vec-
tors si and sj are d-dimensional approximations of ši and šj ,
respectively. To capture this, a meaningful regularization is
the weighted sum of Euclidean distances between all pairs of
common source estimates (si, sj) over G, given by

Tr
(
SLGS

>) =

N∑
i=1

N∑
j=1

wij‖si − sj‖22 . (3)

Evidently, minimizing (3) over S forces vectors si and sj re-
siding on adjacent nodes associated with large weights wij to
be close to each other. To account for this prior on common
sources, the quadratic term (3) is well motivated as a regular-
izer of the standard MAXVAR MCCA (cf. (2)), yielding our
novel graph-regularized (G) MCCA as the solution of

min
{Um},S

M∑
m=1

∥∥U>mXm − S
∥∥2
F

+ γTr
(
SLGS

>) (4a)

s. to SS> = I (4b)

where the hyper-parameter γ ≥ 0 balances minimizing the
distance between canonical variables and common source es-
timates, and promoting smoothness of common source esti-
mates over G. Clearly, GMCCA reduces to MCCA in (2)
when γ = 0; and as γ increases, GMCCA progressively lever-
ages this additional graph-induced knowledge when seeking
the common sources and canonical variables.

Taking the derivative of (4a) with respect to Um and set-
ting it to 0 lead to Ûm := (XmX>m)−1XmS>. After sub-
stituting Um by Ûm and ignoring the constant term in (4a),
solving (4) boils down to maximizing Tr(SCS>) subject to
(4b), where C :=

∑M
m=1X

>
m(XmX>m)−1Xm − γLG . It fol-

lows readily that rows of the Ŝ-optimizer are the d-principal
eigenvectors of C. Subsequently, the Ûm-optimizer can be
obtained as Ûm = (XmX>m)−1XmŜ> for m = 1, . . . , M .

Two remarks are worth making at this point.

Remark 1. Distinct from the single graph Laplacian regular-
izer in our GMCCA, the related approaches in [10] and [11]
rely on M different regularizers {U>mXmLGmX>mUm}m to
exploit this extra graph information, for view-specific graphs
{LGm}m on data {Xm}m. The approach in [11] however
does not admit an analytical solution, while [10] copes with
semi-supervised learning, where cross-covariances of pair-
wise datasets are not fully available. In contrast, our single
graph regularizer in (4) is focused on the common sources. In
practice, this is critical when one has prior information about
the common sources along with theM views. In paper classi-
fication for instance, except for titles, keywords, and introduc-
tions of given articles, one may also have access to the cita-
tion network, capturing the similarities among papers. More
generally, the graph knowledge of inter-dependent sources
can be a prior given by an ‘expert,’ or, it can be dictated by
the underlying physics (e.g., [12] in power networks), or, it
can be learned from alternate views of the data. Finally, our
GMCCA comes with simple analytical solutions.

Remark 2. In terms of selecting γ, two feasible methods are:
i) cross-validation for supervised learning tasks, where γ is
set to the one yielding the best empirical performance on the
labeled training data; and, ii) a spectral clustering approach
that automatically finds the best γ from a given set of candi-
dates; see e.g., [13] for details.

4. GRAPH-REGULARIZED KERNEL MCCA

In various practical setups, nonlinearly mapped data vectors
are dependent and high-dimensional with N � minm{Dm},
while sample covariance matrices {XmX>m} become singu-
lar. This renders GMCCA infeasible due to the following two
reasons: i) GMCCA presumes M linear low-dimensional hy-
perplanes to project the M -view data vectors; and, ii) GM-
CCA incurs high computational complexity O(MD3) with
D := maxm{Dm}. To address these issues, the linear GM-
CCA in (4) will be first re-expressed in its dual form, and the
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M -view data will be then mapped to higher dimensional fea-
ture spaces throughM nonlinear functions. Subsequently, the
common low-dimensional representations can be obtained.

Toward this objective, we start by rewriting the load-
ing vectors {Um} as linear functions of associated datasets
{Xm}, yielding {Um := XmAm}, where {Am ∈ RN×d}
are the unknown dual matrices. Substituting Um by XmAm

in linear GMCCA (4) gives rise to its dual form

min
{Am},S

M∑
m=1

∥∥A>mX>mXm − S
∥∥2
F

+ γTr
(
SLGS

>) (5a)

s. to SS> = I. (5b)

Invoking kernels, (5) can be generalized to capture non-
linear dependencies among the M views. Specifically, as-
suming M nonlinear functions {φm}, data vectors {xm,i}
in space RDm (columns of Xm) are mapped to {φm(xm,i)}
in space RLm with possibly Lm = ∞. Interestingly, the
dual in (5) depends on Xm only through X>mXm. Using the
‘kernel trick,’ we can thus replace {〈xm,i,xm,j〉}Ni,j=1 with
{〈φm(xm,i),φm(xm,j)〉}Ni,j=1.

Define a kernel matrix K̄m ∈ RN×N for each Xm, whose
(i, j)-th entry is κm(xm,i,xm,j) := 〈φm(xm,i),φm(xm,j)〉,
where κm(·) is a so-termed kernel function. Similar to GM-
CCA, we first remove the means of all transformed data
{φm(xm,i)}Ni=1 to effect centering

Km := K̄m − 1K̄m/N − K̄m1/N + 1K̄m1/N2 (6)

where 1 ∈ RN×N is an all-one matrix. In the sequel, replac-
ing {X>mXm} in (5) with the centered kernel matrices {Km},
the nonlinear counterpart of (5) can be obtained as

min
{Am},S

M∑
m=1

∥∥A>mKm − S
∥∥2
F

+ γTr
(
SLGS

>) (7a)

s. to SS> = I. (7b)

Kernel matrices {Km} are assumed to be nonsingular.
Analogous to the process of solving GMCCA, one can con-
firm that rows of the Ŝ-optimizer of (7) coincide with the d
principal eigenvectors ofMI−γLG and that Âm = K−1m Ŝ>.
Clearly, the common source estimate Ŝ does not depend on
{Xm}, which contradicts our goal of finding the shared
low-dimensional representation in {Xm}. To bypass this
impasse, following kernel CCA (see e.g., [14]), we penalize
the norms of

{
‖Um‖2F = Tr

(
A>mKmAm

)}
by introducing

a Tikhonov regularization term on each loading vector. This
yields our graph-regularized kernel (GK) MCCA as

min
{Am},S

M∑
m=1

∥∥A>mKm − S
∥∥2
F

+ γTr
(
SLGS

>)
+

M∑
m=1

εmTr
(
A>mKmAm

)
(8a)

s. to SS> = I (8b)

Algorithm 1 Graph-regularized kernel MCCA.
1: Input: {Xm}Mm=1, ε, γ, W, and {κm}Mm=1.
2: Construct {Km}Mm=1 using (6).
3: Build LG = D−W.
4: Form Cg =

∑M
m=1 (Km + εI)

−1
Km − γLG .

5: Perform eigendecomposition on Cg to obtain the d prin-
cipal eigenvectors collected as the columns of Ŝ>.

6: Compute {Âm = (Km + εI)
−1

Ŝ>}Mm=1.
7: Output: {Âm}Mm=1 and Ŝ.

where hyper-parameters {εm ≥ 0} are predetermined penalty
constants. Similar to the process of solving (4), optimizers of
(8) can be readily obtained; see Alg. 1 for details.

MCCA, GMCCA, GKMCCA, and KMCCA incur respec-
tively computational complexity of O(N2max(N,DM)),
O(N2max(N,DM)), O(N2M max(N,D)), and O(N2M
max(N,D)). When N � Dm for some m ∈ {1, . . . ,M},
GMCCA is not applicable, or suboptimal even if pseudo-
inverse is used at a computational cost of orderO(MD3). On
the other hand, GKMCCA is computationally more afford-
able since its cost grows only linearly with D. Furthermore,
when Dm � N for all m, it can be readily verified that
GMCCA is computationally more attractive than GKMCCA.

5. NUMERICAL TESTS

The UCI digit image database1 is used to demonstrate the
effectiveness of GMCCA in clustering. This database com-
prises 6 feature sets of 10 digits (classes), each having 200
data samples. Seven classes including digits 1, 2, 3, 4, 7, 8, 9
were used to form the 6 views {Xm ∈ RDm×1,400}6m=1 with
D1 = 76, D2 = 216, D3 = 64, D4 = 240, D5 = 47,
and D6 = 6. Based on X3, the W was constructed having
(i, j)-th entry

wij :=

{
K3(i, j), i ∈ Nk1(j) or j ∈ Nk1(i)
0, otherwise

where K3 is a Gaussian kernel matrix of X3 with bandwidth
equal to the mean of the corresponding Euclidean distances,
and Nk1(j) the set of column indices of K3 containing the
k1-nearest neighbors of column j. GPCA and PCA were run
on the concatenated feature vectors, while the K-means was
performed using either Ŝ, or the principal components (PCs)
with parameters γ = 0.1 and d = 3.

Clustering performance is evaluated in terms of both clus-
tering accuracy and scatter ratio defined in [13, Sec. VII-A].
Table 1 depicts the clustering performance of MCCA, PCA,
GMCCA, and GPCA under different k1 values. Evidently,
GMCCA achieves the best clustering accuracy and scatter ra-
tio. For k1 = 50, Fig. 1 reports the first two rows of Ŝ ob-
tained by (G)MCCA along with the first two PCs of (G)PCA,

1Downloaded from http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Fig. 1. Scatter plot of the first two rows of Ŝ or PCs.

Table 1. Clustering performance comparison.

k1
Clustering accuracy Scatter ratio

GMCCA GPCA GMCCA GPCA

10 0.8141 0.5407 9.37148 4.9569

20 0.8207 0.5405 11.6099 4.9693

30 0.8359 0.5438 12.2327 4.9868

40 0.8523 0.5453 12.0851 5.0157

50 0.8725 0.5444 12.1200 5.0640

MCCA 0.8007 5.5145

PCA 0.5421 4.9495

where 7 different colors denote 7 classes. The scatter plots in
Fig. 1 show that GMCCA separates the 7 clusters the best,
implying that the data points within classes are more concen-
trated but between classes are farther apart.

The ability of GKMCCA in classification is assessed
using the MNIST dataset2, which consists of 10 classes of
28 × 28 handwritten images, each class (digit) having 7, 000
images. Per independent realization, we performed Coiflets,
Symlets, and Daubechies orthonormal wavelet transforms
on 3Ntr randomly chosen images from each class to form
the 3 views. Subsequently, the selected images were re-
sized to 14 × 14 pixels, followed by vectorization to ob-
tain 196 × 1 vectors, which were evenly divided into 3
groups (Ntr vectors per class per group) to construct the
training data {Xm ∈ R196×10Ntr}3m=1, hyper-parameter
tunning data {Xtu

m ∈ R196×10Ntr}3m=1, and testing data

2Downloaded from http://yann.lecun.com/exdb/mnist/

20 40 60 80 100 120 140 160 180 200

N
tr

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

GKMCCA
KMCCA
GKPCA
KPCA
LKMCCA
KNN
GDMCCA
DMCCA
GDPCA
DPCA

Fig. 2. Classification results of GKMCCA using MNIST data.

{Xte
m ∈ R196×10Ntr}3m=1. Gaussian kernels were used to

build {Km} for {Xm} with bandwidths set to the means of
their associated distances. Similarly, the resized and vector-
ized training data were used to construct a Gaussian kernel
matrix Ko ∈ R10Ntr×10Ntr . Based on Ko and k1 = Ntr − 1,
we formed W with K3(i, j) substituted by the (i, j)-th en-
try of Ko. When implementing graph Laplacian regularized
kernel multi-view (LKM) CCA [10], the related three graph
adjacency matrices were obtained with {Km}3m=1. Hyper-
parameters of GKMCCA, KMCCA, GKPCA, KPCA, GDM-
CCA, DMCCA, GDPCA, and LKMCCA were chosen from
30 logarithmically spaced values in [10−3, 103] that yields the
highest classification accuracy. Ten subspace vectors were
obtained, and were further utilized to find the 10-dimensional
representations of X1. The 5-nearest neighbors rule was em-
ployed for digit classification, and its accuracy is reported
after averaging over 30 Monte Carlo runs.

Figure 2 depicts the classification accuracy of all consid-
ered approaches, and demonstrates that the performance gap
between GKMCCA and any other competing alternative re-
mains remarkably sizeable. See more numerical tests in the
full version [15].

6. CONCLUSIONS

In this work, graph-regularized multiview (M) CCA and
kernel MCCA were developed to uncover the latent low-
dimensional structures commonly present in multiview data.
Our distinct contributions relative to existing MCCA vari-
ants leverage extra geometrical knowledge of the common
sources, encodes this dependency in a graph that is subse-
quently invoked as a regularizer in the standard MAXVAR
MCCA framework. Numerical tests demonstrate the merits of
our proposed approaches relative to state-of-the-art schemes
in several machine learning tasks.
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