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ABSTRACT
In this paper, we present a method for learning an underlying
graph topology using observed graph signals as training data.
The novelty of our method lies on the combination of two as-
sumptions that are imposed as constraints to the graph learning
process: i) the standard assumption used in the literature that
signals are smooth with respect to graph structure (i.e. small
signal variation at adjacent nodes), with ii) the additional as-
sumption that signals are bandlimited, which implies sparsity
in the signals’ representation in the spectral domain. The latter
assumption affects the inference of the whole eigenvalue de-
composition of the Laplacian matrix and leads to a challenging
new optimization problem. The conducted experimental evalu-
ation shows that the proposed algorithm to solve this problem
outperforms a reference state-of-the-art method that is based
only on the smoothness assumption, when compared in the
graph learning task on synthetic and real graph signals.

Index Terms – Graph learning, graph signal processing,
signal representation, bandlimited signals, sparse coding.

1. INTRODUCTION

Graph signal processing (GSP) [1, 2] is a new and emerging
field manifesting the generalization of standard signal process-
ing tools (for example sampling [3], filtering [4], recovery [5])
to signals recorded in complex environments. Such an environ-
ment comprises of multiple entities whose interrelations, or
interactions, can be encoded in a graph, and specifically in the
links between its nodes. In more formal terms, a graph signal
is a function defined on the nodes of a graph and can be repre-
sented as a vector with one component per graph node. Note
that, contrary to traditional signals that encode the variation
over time, a graph signal only refers to a single time instance
(e.g. its acquisition time) and hence encodes the variation of
an instantaneous observation over a graph structure.

Despite GSP has provided a new way to approach several
real-world applications [6, 7, 8, 9], its success relies on the
availability and accuracy of the underlying graph. In some con-
texts the graph is a priori known, perfectly or to some extent,

� Authors with equal contribution to this work.

since it may have been engineered in the first place by experts
(e.g. sensor and communication networks) or can be extracted
by examining the intrinsic relations between the connected
entities (e.g. by considering their geographical proximity). In
most situations, though, it is hard to define a suitable and suffi-
ciently accurate graph, and hence that needs to be learned from
data. This task is referred to as data-driven graph inference
and its aim is to find the graph that best explains a given set of
observed graph signals.

A body of previous work on graph learning has been
based on physical models, such as epidemic models or other
statistical information propagation and interaction models
[10, 11, 12]. This task has been also seen as the estimation of
the parameters of a Markov random field [13]. In the case of
Gaussian random fields, the graph estimation consists in the es-
timation of the inverse covariance matrix [14, 15]. Yet, unless
a statistical model is assumed for the mechanism that generates
the observed graph signals, the graph inference is inevitably an
ill-posed problem since several graphs may be almost equally
capable to explain the same set of graph signals. Thus, solving
the problem requires the introduction of constraints that would
narrow down the range of possible solutions. In most related
works [16, 17, 18, 19, 20] the smoothness constraint has been
used , assuming that only small local signal variation should
be expected across a graph, i.e. among adjacent nodes.

In this article we introduce the additional assumption of
bandlimitedness which implies the sparsity of the graph sig-
nals’ representation in the spectral domain. This is also a
well-known concept in the GSP theory, especially for sam-
pling tasks [21], and a property observed in real-world data
[22]. To the best of our knowledge, there exists only the work
in [23] that considers the bandlimitedness for the graph infer-
ence task. However, our work is the first to fully combine this
assumption with that of smoothness, leading to a novel and
challenging optimization problem. Experimental evaluation on
synthetic and real-world data, shows that the proposed graph
learning method outperforms the reference work in [24] that
assumes only the smoothness of the graph signals. The results
also suggest that our direction of work is promising for the
task of sampling of future signal observations, or interpolation.
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2. LEARNING GRAPHS FROM SIGNALS

2.1. Notations

Let a weighted graph G=(V ,E) with nodes V = {1, ...,N},
edges E = {(i, j,wij), i, j ∈V}, and weights wij ∈R+. The
Laplacian matrix L of the graph is defined as L=D−W ,
where D is the degree matrix and W the weight matrix. As-
suming that G is undirected, with no self-loops, and with a
single connected component, then L is a symmetric positive
semi-definite matrix. Therefore, its eigenvalue decomposition
can be written as L=XΛXT, with Λ= diag(λ1, ...,λN ) a
diagonal matrix with the eigenvalues and X =(x1, ...,xN )
a matrix with the eigenvectors as columns. Note that for a
graph with one connected component, it holds that λ1 =0 and
x1 =1N , where 1N is the constant unitary vector of size N .

A graph signal can be represented as a vector y ∈RN ,
where yi is the function value at the i-th node. Using the Graph
Fourier Transform (GFT) it is possible to create a spectral rep-
resentation h for y defined as h=XTy. The eigenvalues can
be interpreted as distinct frequencies, the components of h as
Fourier coefficients, and the eigenvectors as a decomposition
basis. A graph signal y is said to be smooth if adjacent nodes
tend to exhibit similar behavior. Smoothness can be quantified
with various metrics, though probably the most common is:

yTLy=
1

2

∑
i,j

wij (yi−yj)2 . (1)

A signal gets smoother, thus (1) lower, when its value at any
two nodes gets closer as their edge weight gets larger. The
smoothness property is naturally present in real-world graph
signals [16] and it has consequently been widely considered
for graph inference [17, 24].

A graph signal y is said to be ω-bandlimited when its
Fourier coefficients h, associated to frequencies λk which are
higher than a real value ω, are assumed to be null, or formally:
hi =0,∀λi>ω. The bandlimitedness assumption can also be
interpreted as a sparsity assumption on h. This assumption
on graph signals is very common, especially in GSP where
it is the main hypothesis of several sampling methods [25,
26, 27, 3]. However, this work is the first to fully employ it
for the graph learning task. Intuitively, this property refers to
the fundamental principle of signal processing which suggests
filtering out the band of high frequencies of a signal where
there assumably lies mostly noise and little or no information.

Let us finally consider that n graph signals {y(k)}nk=1 of
size N compose a matrix Y = [y(1), ...,y(n)]∈RN×n.

2.2. Problem statement

The general task of data-driven graph inference aims at learn-
ing the graph G that best explains the structure of the observed
graph signals Y . What we propose in this article is to learn
the graph that best explains the structure of the approximation

of the signals Y , which has to be smooth and bandlimited on
G. To that end, we introduce the optimization problem:

min
H,X,Λ

‖Y −XH‖2F +α‖Λ
1/2H‖2F +β‖H‖2,1 (2)

s.t.


XTX = IN , x1 =1N (a)
(XΛXT)i,j ≤ 0 i 6= j, (b)
Λ= diag(0,λ2, ...,λN )� 0 (c)
tr(Λ)=N ∈R+

∗ . (d)

This problem aims at learning conjointly the graph G (defined
by its Laplacian matrix L=XΛXT) and a smooth bandlim-
ited approximation XH of the noisy observed signals Y . The
three terms composing the objective function (2) are:

1. The first term corresponds to the quadratic approximation
error of Y by XH , where ‖·‖F is the Frobenius norm.

2. The second term is a smoothness regularization imposed
to the approximation XH . Rewriting equation (1) for
the set of graph signals XH , we get ‖L1/2XH‖2F =
‖XΛ1/2XTXH‖2F = ‖Λ

1/2H‖2F. This kind of regular-
ization is very common in graph learning [18, 20].

3. The last term ‖H‖2,1 is a sparsity regularization that
corresponds to the sum of the `2-norm of each row of
H . This is the main contribution of our work, which is
motivated by the bandlimitedness assumption on the graph
signals. Indeed, this hypothesis implies weights equal to
zero at the same dimension for every constructed signal,
and such norm will enforce that feature.

Finally, α,β > 0 are hyperparameters controlling respectively
the smoothness and the sparsity of H . Regarding the con-
straints, the first three (a, b, c) enforce XΛXT to be a proper
combinatorial Laplacian with a single connected component.
The last one, (d), was proposed in [24] to impose structure in
the learned graph so that the trivial solution λ=0 is avoided.
A discussion about values other than N is made in [18].

3. SOLVING THE OPTIMIZATION PROBLEM

The proposed optimization algorithm to solve the problem (2)
is an alternating minimization procedure [28] on H , X , and
Λ, knowing Y . The overall optimization procedure is given
by the Graph Learning for Smooth and Sparse Spectral Rep-
resentation (GL-3SR) in Alg. 1. At the beginning, it requires
the initialization of X and Λ which can be done by creating
a graph with one connected component (e.g. a prior graph, a
complete graph, or just a random graph) and then compute the
Singular Value Decomposition (SVD) of its Laplacian matrix.

3.1. Optimization with respect to H

For fixed X , Λ, the problem (2) can be written as:

min
H

∥∥∥∥∥
[

Y
0N×n

]
−
[

X
(αΛ)1/2

]
H

∥∥∥∥∥
2

F

+β‖H‖2,1, (3)
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where 0N×n is a zero matrix of size N×n. The form of (3)
is a particular case of Group Lasso [29] with equal weights for
each group. Thus, it can be solved efficiently using a suited
optimization procedure, such as the coordinate descent [30].

3.2. Optimization with respect to X

With respect to X , the optimization problem is not convex:

min
X
‖Y −XH‖2F (4)

s.t.
{

XTX = IN , x1 =1N (a)
(XΛXT)i,j ≤ 0 i 6= j. (b)

To our knowledge, there exists no method solving (4) with
both the above constraints. In the literature, solutions have
been proposed considering only the constraint XTX = IN

[31, 32]. Due to the difficulty of the problem and the lack
of space, our proposed workaround is a closed-form solution
to (4) under the constraint (a) only, which is explained in the
following proposition.

Proposition 1. (Closed-form solution for the relaxation of
problem (4).) – Consider the optimization with the constraint
(a) only. Let X0 be any matrix that belongs to the constraints
set (a), and M =(XT

0Y HT)1:,1: the submatrix containing
everything but the input’s first row and first column. Finally,
let PDQT be the SVD of M . Then, the problem admits the
following closed form solution:

X∗=X0

[
1 0TN−1

0N−1 PQT

]
. (5)

Proof. By replacing X with X0G̃
∗
, one can observe that the

relaxed optimization problem is equivalent to finding:

G∗= argmin
G

∥∥∥∥∥Y −X0

[
1 0TN−1

0N−1 G

]
︸ ︷︷ ︸

,G̃

H

∥∥∥∥∥
2

F

(6)

s.t. GTG= IN−1. Solving (6) is equivalent to finding:
G∗=argmax

G
tr
(
HY TX0G̃

)
=argmax

G
tr
(
MTG

)
s.t. GTG= IN−1. Then, as proved in [31], we finally have
G∗=PQT, which completes the proof.

The constraints (a) and (b) are equally important to obtain
a valid Laplacian matrix at the end, however reducing the
problem (4) by the use of the closed-form (5) does not ensure
that the constraint (b) will be satisfied. Nevertheless, one may
notice that for any X that satisfies (a) but not necessarily (b),
there always exists a Λ that makes all constraints satisfied (it
suffices to take λ2 = ...=λN = N

N−1 ). For these reason, we
propose to use the closed-form solution of Proposition (1) to
learn X and always optimize with respect to Λ right after.

Algorithm 1 - Graph Learning with GL-3SR
1: Input : the signals Y , α, β
2: Output : the sparse spectral signals H , X , Λ
3: Initialization : X,Λ
4: for t=1,2, ... do
5: Update H: Solve the lasso problem (3).
6: Update X: Compute the closed-form solution (5).
7: Update Λ: Solve the linear program (7).
8: end for

3.3. Optimization with respect to Λ

With respect to Λ, the optimization problem (2) becomes:

min
Λ
α tr(HTΛH) (7)

s.t.

 (XΛXT)i,j ≤ 0 i 6= j, (b)
Λ= diag(0,λ2, ...,λN )� 0 (c)
tr(Λ)=N ∈R+

∗ , (d)

which is a linear program that can be solved efficiently using
linear cone programs.

4. EXPERIMENTS

In this section we use synthetic and real data to compare
the proposed graph learning GL-3SR 1 method against GL-
SigRep [24], which is a reference state-of-the-art method in
the related literature.
Results on synthetic data. Having access to the ground truth
of synthetic data, we provide visual and quantitative compar-
isons of the learned H and W using the Squared Error and the
F -measure (in particular, the F1-measure), often used in this
type of experimental evaluation [34]. In each experiment and
for both methods, the best set of hyperparameters were first
found with regards to the considered evaluation metrics, while
also achieving a similar error in reconstructing the true graph
signals. Furthermore, as explained in [34], since F -measure is
defined for binary and relatively sparse variables, we evaluated
on a thresholded version of the learned W each time.
Graphs: We carried out experiments on graphs with 20 vertices,
following: i) a Random Geometric Graph (RGG - see [24]
for details) model with a truncated Gaussian kernel of width
size 0.5, where weights smaller than 0.75 were set to 0; ii) an
Erdős-Rényi (ER) model with edge probability 0.2.
Graph signals: Given a graph, our sampling process for graph
signals was very similar to the one in [24], with y=Xh+ε,
and h, ε following Gaussian distributions. The difference
brought by the bandlimitedness assumption is that h is sup-
posed to follow a multivariate Gaussian distribution with de-
generate values at some dimensions. Its precision matrix is
defined as the eigenvalue matrix of the graph Laplacian L

1The source code of our implementations is available at https://
github.com/pierreHmbt/GL-3SR. We used the scikit-learn’s [33]
function MultiTaskLasso to solve the optimization problem (3) and the
Python’s CVXOPT package to solve the linear program (7).
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RGG

ER

Fig. 1: Comparison of the ground truth, and the adjacency ma-
trices learned (after thresholding) by the competing methods
(columns), for the considered random graph models (rows).

Metric Method ER RGG

Error (L) GL-3SR 0.113(±0.032) 0.075(±0.028)

GL-SigRep 0.862(±0.301) 0.342(±0.074)

F -measure (W ) GL-3SR 0.868(±0.074) 0.895(±0.032)

GL-SigRep 0.677(±0.117) 0.807(±0.037)

F -measure (H) GL-3SR 0.478(±0.065) 0.816(±0.045)

GL-SigRep 0.314(±0.017) 0.616(±0.015)

Table 1: Comparison of the two learning methods on synthetic
data, according to three quality metrics (average ± std). The best
performance is indicated in bold.

where the largest values were set to 0. As in [24], the error
term ε follows a multivariate Gaussian distribution with zero
mean and covariance σ2

εIN . The probability density functions
are thus given by: ε∼N (0,σ2

εIp) and h∼N (µ,Λ†K), where
for 0<K ≤N , diag(ΛK)= (λ1, ...,λK ,0, ...,0) and † stands
for the Moore-Penrose pseudo inverse. The mean value of
each signal was set to 0, the variance of the noise was set to
0.52 and the parameter K that enforces the bandlimitedness
property was set to 10 (i.e. half the size of V).

For each type of graph, we ran 10 experiments with 1000
graph signals sampled as explained earlier, i.e. Y ∈R20×1000.
The average value of the evaluation metrics and their standard
deviation are compared in Tab. 1; the learned weighted adja-
cency matrices (before and after thresholding) are displayed
in Fig. 1. These indicate that in this sampling process the
proposed GL-3SR method managed to infer a better graph,
closer to the one of the ground truth, compared to GL-SigRep.
This example can be considered as a proof of concept, since it
shows clearly that if the (denoised) graph signals are bandlim-
ited, then our method performs well.

Fig. 2: Graph segmentation in two parts (red and black nodes)
with spectral clustering using the Laplacian matrix learned by
the GL-3SR algorithm.

Results on real-world data. We used hourly temperature mea-
surements on 32 weather stations in Brittany, France, during a
period of 31 days. The dataset contains 744 graph signals in
total, i.e. Y ∈R32×744, which are assumed to be smooth and
bandlimited on the unknown underlying graph. Our objective
is to infer that graph using GL-3SR. The two hyperparameters
were chosen to maximize both smoothness and sparsity, while
not deteriorating the recovery of the true signals.

We first show the capacity of the learned graph to allow
efficient subsampling and interpolation. More specifically, the
learned graph is in accordance with the one found in [20].
The important difference is, however, that in this graph the
signals are 17-bandlimited. This property allows to: i) discard
more than half of the nodes (subsampling); ii) reconstruct the
true signals with an RMSE=0.087 when only 15 values on
nodes are used (interpolation). In addition, as displayed in
Fig. 2, the spectral clustering algorithm [35], using the five
eigenvectors associated to the five lowest eigenvalues of the
resulting Laplacian, segments the learned graph in two parts
corresponding to the north and the south of Britanny.

5. CONCLUSIONS

We presented a data-driven graph learning approach by em-
ploying a combination of two assumptions. The first is stan-
dard in the related literature and concerns the smoothness of
graph signals with respect to the underlying graph structure.
The second is the bandlimitedness assumption which implies
sparsity in the signals’ representation in the spectral domain.
We then presented the GL-3SR method to solve the derived
new and challenging optimization problem. The findings of
our empirical evaluation showed that the proposed approach
outperforms the reference state-of-the-art GL-SigRep method
in synthetic and real-world data The results also suggest that
our method learns graphs that are promising in the context of
graph subsampling and signal interpolation, which we plan to
investigate further.
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