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ABSTRACT

Sampling lies at the heart of signal processing. The celebrated Shan-
non - Nyquist theorem states that in order to reconstruct a continuous
or discrete time signal from uniform samples one must sample at a
rate twice the highest frequency present in the signal. Numerous
signals and images of interest, however, are not even approximately
bandlimited. While much progress has happened in recent years, re-
construction from sub-Nyquist samples still hinges on the use of ran-
dom / incoherent (aggregate) sampling patterns, instead of uniform
or regular sampling, which is far more simple, practical, and natural
in many applications. In this work, we study regular sampling and
reconstruction of three- or higher-dimensional signals (tensors). We
prove that exact tensor reconstruction from regular samples is feasi-
ble under mild conditions on the rank of the tensor. Furthermore we
cast the functional magnetic resonance imaging (fMRI) acceleration
task as a regular tensor sampling problem and provide an algorith-
mic framework that effectively handles the reconstruction task. Ex-
periments based on synthetic data and real fMRI data showcase the
effectiveness of our approach.

Index Terms— sampling, reconstruction, tensor completion,
MRI acceleration, functional MRI

1. INTRODUCTION

In the first half of the 20th century, Whittaker, Nyquist, Kotelnikov,
and Shannon [1, 2, 3, 4] laid the foundation of the sampling theo-
rem, which together with the discovery of the fast Fourier transform
catalyzed the field of signal processing. In order to perfectly recon-
struct a signal from uniformly spaced samples, one must sample at a
rate at least twice the maximum frequency present in the signal. The
theorem applies to both continuous and discrete time bandlimited
signals. The Shannon-Nyquist theorem is one of very few results
that guarantee perfect reconstruction of a signal after a regular, and
more specifically uniform, sampling process. Unfortunately, many
time series, images, and higher-dimensional (e.g., video) signals of
practical interest are nowhere close to being bandlimited.

Compressive sensing (CS) [5, 6, 7] emerged in the early 2000’s
as an alternative which allows recovery from a set of measurements
sampled or compressed below the Nyquist rate. CS relies on two
basic principles: the signal of interest must be sparse in some do-
main and the sampling/compression pattern should be ‘incoherent’.
Compared to the sampling theorem, CS exploits sparsity (instead of
bandlimitedness) in a known domain, thereby enabling reconstruc-
tion from fewer measurements. The drawback is that one loses the
simplicity of regular sampling, which is also the only practical way
to sample in many applications. Following similar principles as in
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CS, low rank matrix completion (LRMC) studies sampling and re-
construction of two dimensional discrete signals (matrices, such as
images). The basic property utilized is low matrix rank, and inco-
herent sampling patterns are again employed. CS and LRMC are
linked to a number of important engineering applications, such as
collaborative filtering. However, the incoherence requirement on the
sampling process is restrictive indeed – it does not apply in various
practical scenarios.

Naturally, CS and LRMC ideas have been extended to higher
dimensional signals and in particular tensors. Sampling and recon-
struction of multidimensional signals is an important problem. In
magnetic resonance imaging (MRI) or functional MRI (fMRI), for
instance, the agonizingly slow scan acquisition process strongly mo-
tivates exploring appropriate sampling techniques for acceleration.
Several works have appeared on the topic of tensor completion and
reconstruction, e.g., [8, 9, 10, 11, 12, 13]. The majority of them fo-
cuses on algorithmic aspects of tensor completion [8, 10, 11, 12],
or attempt to generalize ideas such as the nuclear norm and singular
value decomposition (SVD) to tensors [13]. The few that propose
models and provable conditions under which tensor completion is
feasible, adopt a LRMC type of analysis [9], which however is not
tailored to the unique properties of tensors. Most importantly, the
proposed tensor sampling techniques use random samples or ran-
dom projections, and have difficulty dealing with regular sampling
patterns.
Recent work by Sorensen et. al. [14, 15] considers the problem of
completing a tensor with missing fibers, which is common in chemo-
metrics, and provides theoretical conditions under which completion
of a tensor with missing fibers is feasible – as well as an algebraic
framework to handle the problem. The work in [14] is the first, to
the best of our knowledge, that can handle systematic fiber sampling;
but the algebraic approach therein is derived under a noiseless setting
and real-world data are usually quite noisy. Moreover, a variety of
other interesting types of regular tensor sampling have not been con-
sidered. For example, a different type of regular aggregate sampling
was considered in [16, 17, 18].
Contributions: We study the task of sampling and reconstruction of
third order tensors. Our approach focuses on using possibly mul-
tiple regular fiber and slab sampling patterns, in one or multiple
modes of the tensor. Unlike CS and LRMC, that hinge on inco-
herent sampling strategies, we offer provable conditions for tensor
reconstruction from regular and/or equispaced samples, under mild
rank limitedness conditions. Our analysis leverages the uniqueness
properties of the canonical polyadic decomposition (CPD) of ten-
sors. Furthermore we cast the task of parallel fMRI acceleration as
a regular tensor sampling and reconstruction procedure and propose
an efficient algorithmic framework to tackle it. Numerical experi-
ments using synthetic and real data show that the proposed approach
is very promising.
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2. TENSOR ALGEBRA PRELIMINARIES

We now briefly review basic concepts of tensor algebra that are nec-
essary for exposition of our main contributions. We refer the inter-
ested reader to [19, 20] for more in-depth background.

Third order tensors X ∈ CI×J×K , are three way arrays indexed
by i, j, k. A third order tensor has 3 modes: columns X(i, :, k),
rows X(:, j, k) and fibers X(i, j, :), and 3 types of slabs: vertical,
horizontal and frontal slabs, represented by X(:, j, :), X(i, :, :),
X(:, :, k) respectively. Any third order tensor can be decom-
posed as a sum of three way outer products, i.e., X(i, j, k) =∑F
f=1 A(i, f)B(j, f)C(k, f). This model is known as the canon-

ical polyadic decomposition (CPD), where F is the tensor rank or
CP rank and A ∈ CI×F , B ∈ CJ×F , and C ∈ CK×F are called
the low-rank factors of the third order tensor. For brevity we use
the notation X = JA,B,CK to represent the CPD of a tensor. A
salient feature of tensors is that the CPD model is essentially unique
even when F is much larger than max{I, J,K}.

Theorem 1 [21] Let X = JA,B,CK with A : I ×F , B : J ×F ,
and C : K × F . Assume that A, B and C are drawn from some
joint absolutely continuous distribution. Also assume I ≥ J ≥ K
without loss of generality. If F ≤ 2blog2 Jc+blog2Kc−2, then the
decomposition of X in terms of A,B, and C is essentially unique,
almost surely.
Here, essential uniqueness means that A,B,C are identifiable up
to column permutation and scaling. The above uniqueness condition
is mild. For instance, consider a 200× 200× 200 tensor. Following
Theorem 1, it admits an essentially unique CPD if F ≤ 4096. This
uniqueness condition is way more relaxed compared to those for ma-
trix factorization, which require nonnegativity, sparsity, geometric
conditions, and rank lower than the outer dimensions [22, 23, 24].

One useful operation in tensor algebra is mode multiplication.
The mode product operation multiplies a matrix to a tensor in one
mode. Specifically, X̃ = X ×1 P1 ×2 P2 ×3 P3 multiplies each
column, row and fiber of the tensor by P1, P2, P3 respectively.

3. THE TENSOR SAMPLING MODEL

The core of this paper discusses the reconstruction of a third order
tensor from regular samples taken from one or different modes of
the tensor. The claim is fundamental: regular samples are enough to
recover a third order tensor as long as the tensor is sufficiently low
rank. To make the claim more concrete, let us consider two different
sampling paradigms.

3.1. Tensor sampling paradigm 1

In the first paradigm we study the case where equispaced slabs are
taken from two different modes of a third order tensor. Instead of the

Fig. 1: Tensor sampling paradigm 1.

full tensor, we observe an equispaced subset of frontal and horizontal
slabs. To be more precise, let X ∈ CI×J×K be the original full ten-
sor, which is not fully accessible. Then Y 1 ∈ CIr×J×K represents

the subset of observable horizontal slabs of X and Y 2 ∈ CI×J×Kr

contains the subset of observable frontal slabs. Y 1 can be writ-
ten as the mode 1 multiplication of tensor X with selection matrix
P1 ∈ RIr×I , i.e. Y 1 = X ×1 P1 (1)
and Y 2 as a mode 3 multiplication with matrix P3 ∈ RKr×K , i.e.

Y 2 = X ×3 P3 (2)
A schematic illustration of tensor sampling paradigm 1 model is
given in Fig. 1. Note that P1, P3 are fat matrices, which perform
slab selection in one mode of X , thus Ir < I, Kr < K.

Now, since X is a third order tensor, it admits a CPD model of
rank F , i.e. X = JA,B,CK. Following (1), (2), Y 1, Y 2 can be
represented in the form:

Y 1 = JP1A,B,CK , Y 2 = JA,B,P3CK (3)

Regarding the identifiability of tensor sampling paradigm 1, we have
the following theorem:
Theorem 2 Let X ∈ CI×J×K be the original tensor signal, with
CPD X = JA,B,CK, and Ir, Kr be the number of horizon-
tal and frontal slabs that we sample/observe. Assume that A, B
and C are drawn from a joint absolutely continuous distribution,
and that (A?,B?,C?) satisfies the equations in (3). Also assume
that IrK ≥ IKr without loss of generality. Then, X̂(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth X al-

most surely if F ≤ min
{
2bγ1c−2, 2bγ2c−2, JKr

}
, where γ1 =

log2(IrJ), γ2 = log2(IrK).

3.2. Tensor sampling paradigm 2

The second tensor sampling paradigm considers the scenario where
equispaced samples are taken along a single mode of the tensor. The
schematic illustration of tensor paradigm 2 is given in Fig. 2.

Fig. 2: Tensor sampling paradigm 2.

In particular, we sample the original tensor using r different pat-
terns of horizontal sub-slab samples – in Fig. 2, r = 3. Each pattern
observes I/r equispaced rows of the tensor over (J/r+1) columns
– forming therefore a group of horizontal sub-slabs. Each pair of
patterns includes common columns and samples are taken from all
columns, rows and fibers of the tensor (in a regular manner). These
are necessary conditions on the sampling. First, for pairwise mu-
tually exclusive patterns, there exists a non-trivial scaling ambigu-
ity, which cannot be determined, and second, completely unobserved
slabs are impossible to recover. Note that tensor sampling paradigm
2 can be alternatively viewed as a special case of fiber sampling,
where fibers appear in r overlapping and regularly-spaced sampling
patterns. This will become more clear in the following subsection.

Following similar analysis as in paradigm 1 we deduce:

Y 1 = X ×1 P
(1)
1 ×2 P

(1)
2 =

r
P

(1)
1 A,P

(1)
2 B,C

z
(4a)

Y 2 = X ×1 P
(2)
1 ×2 P

(2)
2 =

r
P

(2)
1 A,P

(2)
2 B,C

z
(4b)

Y 3 = X ×1 P
(3)
1 ×2 P

(3)
2 =

r
P

(3)
1 A,P

(3)
2 B,C

z
(4c)

2933



Regarding the identifiability of tensor sampling paradigm 2, we have
the following theorem:

Theorem 3 Let X ∈ CI×J×K be the original tensor signal, with
CPD X = JA,B,CK, which we sample according to tensor
sampling paradigm 2, using r patterns. Assume that A, B and
C are drawn from a joint absolutely continuous distribution, and
that (A?,B?,C?) satisfies equations (4). Then, X̂(i, j, k) =∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recovers the ground-truth X

almost surely if F ≤ min
{
2bγ1c−2, 2bγ2c−2, 2bγ3c−2

}
, where

γ1 = log2(
IJ
r2

), γ2 = log2(
IK
r
), γ3 = log2(

KJ
r
).

The proofs of the Theorems 2, 3 are relegated to a journal ver-
sion due to space limitations. The implication is striking. If the
original tensor X is sufficiently low rank, then the sub-sampled ten-
sors admit a unique CPD. The proof uses Theorem 1 to establish
identifiability on the CPD of the sub-sampled tensors and the cou-
pling between sub-tensor to reconcile for permutation/scaling mis-
matches. Then one can identify the latent factors A, B, C from
the sub-sampled tensors and reconstruct the original tensor as X =
JA,B,CK. To get an idea on the theoretical conditions, consider
the following example. Let X ∈ C200×200×200 be a tensor that we
sample according to paradigm 2 with r = 3, as illustrated in Fig. 4.
Reconstruction is guaranteed, under the assumptions of Theorem 3,
if the CP rank of X satisfies F ≤ 1024.

3.3. Application to parallel fMRI

Interestingly tensor sampling paradigm 2 finds application in accel-
erating fMRI scan acquisition. An fMRI raw scan, is a tensor signal
with usually 2 spatial dimensions in k-space (kx, ky) and time, coils
as additional dimensions. Acquiring high spatial resolution fMRI is
challenging due to time restrictions. In ongoing efforts to cut down
on the scan acquisition time (and motion artifacts due to patient
discomfort), research has focused on accelerating the scanning pro-
cess by undersampling the ky frequencies. Classic methods, mainly
used for MRI scans, use learning and calibration type techniques
[25, 26, 27], while others employ the CS framework [26, 28, 29] or
LRMC [29, 30, 31] to perform the reconstruction.

While MRI offers complete freedom in choosing the frequencies
to acquire at each time slot (as long as the number remains the same
and the same sampling pattern is followed in every coil), fMRI is
performed using a special fast imaging acquisition that is practically
only used with equispaced sub-sampling patterns due to restrictions
associated with magnetic field inhomogenities and Eddy currents. A
realistic fMRI sampling example with 3-fold acceleration is given
in Fig. 3. First a fully sampled scan is acquired and then 1/3 of

Fig. 3: fMRI sampling at a single coil.

ky frequencies is sampled at each time slot. This process reduces
the operational time between consecutive time slots by a factor of
3. Note that an initial fully sampled scan is typical in fMRI (for
calibration) and in our case it reconciles for scaling mismatches.

The accelerated fMRI acquisition is a regular tensor sampling
process. This becomes clear by appropriately rearranging the time

domain in the sampling of Fig. 3 and forming it as the tensor sam-
pling paradigm of Fig. 2. Note that such a sampling process might
be tricky for classic techniques. On the one hand, calibration-based
techniques such as GRAPPA [25] are linear and suffer from noise
amplification at high acceleration rates. On the other hand, CS and
LRMC schemes have difficulties in operating with regular samples,
since their success rests upon incoherent sampling. Our proposed
tensor approach offers a theoretical framework that allows recon-
struction by sampling equispaced frequencies and in the next section
we propose an algorithmic framework to tackle the reconstruction
problem. We should mention here that tensor approaches have been
proposed in the context of MRI denoising [32] or dynamic MRI sam-
pling, e.g. [33]. However, regarding MRI sampling, they neither
discuss reconstruction guarantees nor work with regular samples.

4. TENSOR COMPLETION FROM REGULAR SAMPLES
USING COUPLED TENSOR FACTORIZATION

In this section we briefly discuss the algorithmic component of our
approach. More detailed discussion is postponed for the journal ver-
sion due to space limitations. In both sampling paradigms we pro-
pose to employ a coupled tensor factorization approach. In particular
for paradigm 1 we propose the following estimator:

minimize
A,B,C

‖Y 1 − JP1A,B,CK‖2F + ‖Y 2 − JA,B,P3CK‖2F , (5)

whereas for paradigm 2 we propose the following formulation:

minimize
A,B,C

∥∥∥Y 1 −
r
P

(1)
1 A,P

(1)
2 B,C

z∥∥∥2

F
+∥∥∥Y 2 −

r
P

(2)
1 A,P

(2)
2 B,C

z∥∥∥2

F
+

∥∥∥Y 3 −
r
P

(3)
1 A,P

(3)
2 B,C

z∥∥∥2

F

(6)

There are several ways to handle the above non-convex problems.
We employ tensorlab’s structured data fusion (SDF) [34], which uses
a nonlinear least squares (NLS) approach. We also cleverly initialize
the coupled procedure with the factors produced by the CPD of each
sampled tensor and taking into consideration the shared factors.

4.1. REgular Tensor Sampling and INterpolation Algorithm
(RETSINA)
For the fMRI sampling and reconstruction task we use a slightly dif-
ferent approach tailored to the specific application. First we observe
that the raw fMRI scan is originally a fourth order tensor. It would
be straight forward to extend our previous analysis to fourth order
tensors, however in this paper we prefer to unfold the 4-way fMRI
tensor to a 3-way one by concatenating kx and ky space into one di-
mension. Assuming the first dimension to be the k-space, the second
one to be the time domain and coils as the third dimension, the previ-
ously explained sampling strategy falls exactly under the framework
of tensor sampling paradigm 2. The REgular Tensor Sampling and
INterpolation Algorithm (RETSINA) is presented in Algorithm 1.
We follow a 3 step procedure, which reduces the operational time of
the algorithm, and empirically yields enhanced reconstruction accu-
racy. In step 1 (initialization), for r-fold acceleration we sum every
r vertical sub-sampled slabs across the time dimension (assuming
the missing values are represented with zeros) and obtain a tensor
Xr ∈ CI×J/r×K without missing entries. This way we are able
to get a rough estimate of A, C factors. In step 2 (refinement),
we compute the CPD of Y 1 (initialized by step 1) and the CPD of
{Y i}i6=1 with C constant. Finally, in step 3, we compute the final
factors by solving (6) with tensorlab’s SDF.

5. SIMULATIONS

In this section, we showcase the effectiveness of the proposed Ten-
sor Sampling framework using synthetic as well as real data experi-
ments. All simulations are performed in MATLAB on a Linux server
with 3.6GHz cores and 32GB RAM.
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Algorithm 1: RETSINA
Input: r, F , X̃ : incomplete tensor (zeros are missing entries).
Initialization:
Xr(:, j, :) =

jr+1∑
l=(j−1)r+2

X̃(:, l, :)

A,C ← CPD(Xr)

Form {Y i}ri=1 from X̃ and set Si = [1, i+ 1 : r : J ].

B(Si, :) = P
(i)
2 B = argminZ‖Y i − JP (i)

1 A,Z,CK‖2F
Refinement:
P

(1)
1 A,P

(1)
2 B,C ← CPD(Y 1).

P
(i)
1 A,P

(i)
2 B,∼← CPD(Y i), i 6= 1 .

Solve (6) using tensorlab’s NLS algorithm.
Reconstruct the missing entries of X using X̂ = JA,B,CK.

5.1. Synthetic Experiments

In this subsection we conduct synthetically generated experiments
to examine the performance of the proposed framework when ten-
sor sampling paradigm 1 is performed. In particular, we generated a
tensor X ∈ R200×300×400 as X = JA,B,CK, where the elements
of the factor matrices are drawn from an independent identically dis-
tributed (i.i.d.) zero mean, unit variance Gaussian distribution. For
the experiments, we set Ir = I/r, Kr = K/r, where r is the down-
sampling factor, and vary the tensor rank F from 200 to 500 and r
from 2 to 100. To evaluate the performance of tensor reconstruction,
we measure the normalized root mean squared error, i.e.

NRMSE =

∑K
k=1‖X̂(:, :, k)−X(:, :, k)‖F∑K

k=1‖X(:, :, k)‖F

The results are shown in Fig. (4). As expected the reconstruction
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Fig. 4: rank F vs downsampling factor r.

is deteriorating as the rank F or the factor r are increasing. For
reasonably small ranks and high downsampling ratio (#samples

IJK
) the

reconstruction is almost perfect.

5.2. Accelerated parallel fMRI

In this subsection we test the performance of the proposed RETSINA
with real fMRI scans, fully sampled in the k-space. The dataset
is obtained from the Center for Magnetic Resonance Research
(CMRR) at the University of Minnesota. The raw scan is a fourth
order tensor of size 104×104×32×490 and we unfold it as a third
order tensor X ∈ C10816×32×490. The sampling pattern performs
3-fold acceleration as illustrated in Fig. 3. We choose F = 100
and run step 1, 2, 3 for 50, 2 and 10 iterations respectively. The
baseline algorithms used for comparison are k-t Focuss [29],
which is a CS type algorithm, k-t SLR [31] which combines ideas
from both LRMC and CS, and the zero padding inverse discrete
Fourier transform (IDFT). Note that k-t SLR works in the real

x-y-time domain and thus we measure the NRMSE of the absolute
valued IDFT of the scan, denoted as NRMSE2, for fair comparisons.
For both k-t Focuss and k-t SLR the publicly available code
was used. Note that k-t Focuss and k-t SLR are single coil
algorithms, thus we treated each coil separately. k-t SLR requires
parameter tuning and so we used a validation step to tune effectively.

Table 1 measures the NRMSE in k-space and absolute real space
as well as runtime. It is clear that the proposed RETSINA achieves
the best accuracy in the k-space whereas it works comparably well
(but markedly faster) with k-t SLR in the absolute real space. This
is expected since RETSINA reconstructs the k-space and k-t SLR
the magnitude of the IDFT. In terms of runtime IDFT is the fastest
but fails to reconstruct the image. RETSINA on the other hand works
faster than k-t SLR and k-t Focuss. However, parallel im-
plementation could significantly speed up k-t Focuss and k-t
SLR operation time at the cost of computational resources.

Table 1: Reconstruction performance of the competing algorithms.

Algorithm RETSINA k-t Focuss k-t SLR IDFT
NRMSE 0.124 0.339 1.41 0.8156
NRMSE2 0.081 0.286 0.073 0.7376
runtime 12min 25.6min (48sec/coil) 480min (15min/coil) 14sec

Fig. 5 shows the reconstructed fMRI scans at different time
frames produced by RETSINA along with the fully sampled data.
The quality of the reconstruction is significantly high, rendering the
proposed RETSINA a good alternative for fMRI acceleration. Fi-

(a) fully sampled scan (b) RETSINA

Fig. 5: fMRI reconstruction with 3-fold acceleration

nally, in Fig. 6 we illustrate the reconstruction performance at a sin-
gle frame for the competing algorithms. Note that k-t SLR seems
to work comparably well, although being slightly off in contrast.

(a) original (b) RETSINA (c) IDFT (d) k-t SLR (e) k-t Focuss

Fig. 6: Reconstruction at a single frame

6. CONCLUSION

In this work we studied regular sampling and reconstruction on
three-dimensional signals. Compared to CS, LRMC, as well as
other tensor works, we provide provable conditions under which
reconstruction of the tensor can be achieved from regular or even
equispaced samples. Furthermore, we cast the fMRI acceleration
task as a regular tensor sampling process and provided an efficient
algorithmic framework to approach the problem. Simulations with
synthetic data as well as real fMRI scans in the k-space show the
validity and effectiveness of our work.
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[32] B. Yaman, S. Weingärtner, N. Kargas, N. D. Sidiropoulos, and M. Ak-
cakaya, “Locally low-rank tensor regularization for high-resolution
quantitative dynamic mri,” in Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2017 IEEE 7th International Work-
shop on. IEEE, 2017, pp. 1–5.

[33] M. Mardani, G. B. Giannakis, and K. Ugurbil, “Tracking tensor sub-
spaces with informative random sampling for real-time mr imaging,”
arXiv preprint arXiv:1609.04104, 2016.

[34] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer,
“Tensorlab v3. 0, march 2016,” URL: http://www. tensorlab. net.

2936


		2019-03-18T10:59:33-0500
	Preflight Ticket Signature




