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ABSTRACT

Tensor completion arouses much attention in signal processing
and machine learning. The tensor train (TT) decomposition
has shown better performances than the Tucker decomposition
in image and video inpainting. In this paper, we propose a
novel tensor completion model based on a newly defined la-
tent Schatten TT norm. Then, the statistical performance is
analyzed by establishing a non-asymptotic upper bound on
the estimation error. Further, a scalable algorithm is devel-
oped to efficiently solve the model. Experimental results of
color image inpainting demonstrate that the proposed norm
has promising performances compared to other variants of
Schatten norm.

Index Terms— tensor completion, TT decomposition,
Schatten norm, statistical performance

1. INTRODUCTION

Due to the superior representation power for multi-way data,
tensor based methods have been broadly studied across many
fields including algebra, signal processing and machine learn-
ing [1-3]. In many applications, multi-way data arrays may be
noisy and incomplete due to unavoidable reasons such as natu-
ral noise in the sensor, communication errors, and missing at
random. Tensor completion aims to reconstruct a tensor from
partial (and maybe noisy) observations [3, 4]. Generally speak-
ing, it is ill-posed unless some assumptions are made on the
tensor to complete. A natural assumption is that the underlying
tensor is low-rank, then it has low degree of freedom and can
potentially be recovered from partial observations. Due to the
diversity of tensor decompositions, a tensor has multiple defi-
nitions of rank function [1]. The Tucker decomposition based
rank minimization models [3] are the most influential in tensor
completion. By summing Schatten 1-norms of all the mode-k
unfoldings, the tensor Schatten norm (or tensor nuclear norm)

*BX zhongjin@njust.edu.cn. This work is partially supported by National
Natural Science Foundation of China under Grant Nos. 61872188, U1713208,
61602244, 61672287, 61702262, 61773215, 61703209, and by the Natural Sci-
ence Foundation of Guangdong Province under Grant No. 2017A030313367.

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

2922

models the underlying tensor as low Tucker rank and has been
extensively studied [5-7]. As the low Tucker rank assumption
may be too strong for some real data tensor, the latent Schatten
norm [6] is proposed and attains state-of-the-art performances
in many tasks [7]. Tensor completion based on other tensor
decompositions (e.g. CP decomposition[8], Tensor-ring [9],
t-SVD [10]) is also an active research topic [11-13].

Recently, the Tensor-train (TT) decomposition has attract-
ed much attention. For higher-order tensors, TT decomposition
provides more space-saving representation called TT format
while preserving the representation power. TT decomposition
based rank minimization has shown better performances than
the Tucker-based algorithms in tensor completion [14—16].

In this paper, we study the tensor completion problem via
a tensor norm closed related to the TT decomposition. The
contributions of this paper are three-fold. First, a novel tensor
completion model based on a newly defined latent Schatten
TT norm is proposed. Second, statistical performance of the
proposed model is analyzed by establishing a non-asymptotic
upper bound on the estimation error. Third, we develop a
scalable algorithm to efficiently solve the proposed model.
Effectiveness of the proposed norm is demonstrated in color
image inpainting experiments.

2. PRELIMINARIES AND RELATED WORK

Notations. We use lowercase bold letters for vectors (e.g. v),
uppercase bold letters for matrices (e.g. M) and calligraph-
ic letters for tensors (e.g. 7). If the dimension is not given
explicitly, all K-th order tensors are in R% % *?x  For any
integer n, let [n] := {1,--- ,n}. For all k¥ € [K — 1], define
d<r := [],«, di; similarly, d- are defined. For simplicity, let
D = H£(=1 dy, and dk = min{dgk, d>k}, Jk = dgk +dsk,Vk €
[K —1]. Given M € R¥*? with singular values o;, define
its spectral norm and nuclear norm as ||M|| = max; o; and
M| = 3, o4, respectively. The inner product between two
tensors 7; and 73 is defined as (71, 75) = vec(71) " vec(72),
where vec(+) is the operation of vectorization [1]. The tensor
Frobenius norm is defined as || 7 || = ||vec(T)]||2. The tensor
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ly-norm and l..-norm are defined as |71 = ||vec(7)||: and
1T lloo = |Ivec(T )]s, Tespectively. Let Ty~ € Ré<kX4>k be
the mode-(1, - - - , k) unfolding matrix where the first ¥ modes
of T € R¥**dx are combined into the rows and the rest
K — k modes are combined into the columns. Define the un-
folding operator F(-) : R4 xdx _ RI<kxd>r quch that
F1(T) = T<i> and let §; ' (-) be its inverse.

Tensor-train decomposition. Given a vector of positive inte-
gers (ro, - -- ,rx) and K third-order tensors Gy, € R¥x—1% %>k
with ro = rx = 1, the Tensor-train (TT) decomposition repre-
sents each elements of 7 € R4 > XK a5

Tiv iz, ix) = ][, GCin,2), (1

where G(:,ix,:) is ar,_1 x ry matrix. Let G = {Gi.}7—; be the
set of G,’s and TT(G) denotes the tensor whose elements are
represented by G as Eq. (1). We call £(7) = (ro, - ,rx) | €
R¥*! the TT-rank of 7. By Theorem 2.1 in [17], we have

r) <rank(Tcps), Vk € [K —1]. 2)

Schatten TT norm. In [16], the Schatten TT norm defined as
1 K-1

1Tl = o= Zk:l [T <k 3

was proposed for tensor completion. For each mode-k, the
matrix nuclear norm is used to minimize rank(T<x>) which
upper bounds the TT-rank r; by Eq. (2). The Schatten TT
norm essentially models the original tensor as simultaneously
low-rank along all mode-(1, - - - , k) foldings. It can be taken
as an extension of the tensor Schatten norm [6] defined as
T e == o8, [Ty ||+ ', which models the underlying tensor
as simultaneously low-rank along all mode-k unfoldings.

As shown in [6, 18], the “sum of Schatten norms”
(e.g. the tensor Schatten norm) may lead to sub-optimal
performances since it may be too strong for some real ten-
sor data to be modeled as simultaneously low-rank. At
the same times, the latent Schatten norm [6] defined as
17 ]| infr_s oo K HXEBH*, has shown better
performances than the tensor Schatten norm especially in
modeling tensors only low-rank along certain modes [6, 18].

3. THE PROPOSED MODEL

3.1. The latent Schatten TT norm

Motivated by the latent Schatten norm, we define the latent
Schatten TT norm as follows:

Definition 1 (Latent Schatten TT norm) Given a tensor
T e RWXxdx jts latent Schatten TT norm is defined as

. K—-1 k
Il = it 20, wIXEL ] @)

where vy, > 0’s are positive parameters.

!For any tensor X € R% *""XdK notation X € Rk X(D/di) jg
used to denote its mode-k unfolding [1].

By the latent Schatten TT norm, the original tensor is modeled
as a mixture of K — 1 latent tensors, each being low-rank along
certain unfolding. We have the following lemma on the latent
Schatten TT norm.

Lemma 1 The dual norm of the latent Schatten TT norm ||-|| 11,
denoted by ||-||7,. can be computed as follows:

T 17 = maxgerrc—1 v I T<is - )

The proof is a direct use of Theorem 16.4 in [19]. The du-
al norm of the latent Schatten TT norm plays a key role in
statistical analysis and efficient computation of the proposed
estimator.

3.2. Problem formulation

The observation model. Suppose we observe N scalars {y; }
by the observation model:

where the standard deviation parameter o > 0 is known, and
the design tensors X;’s and noise variables &,,’s satisfy the
following assumptions:

Al iid. random design tensors. X; € R¥XXdx gre
i.i.d. random tensors drawing from uniform distribu-
tion on the set {e;, o --- viKk) € [di] x
cee X [dK]}.

A.2 sub-exponential noise*. ¢,’s follow independent sub-
exponential distribution with moments E[§,] = 0,
E[¢2] = 1 and bounded exponential moment, i.e.
Jconstant K. > 0,Vn € [N],s.t. Elexp(|&n|/Ke)] < o0.

Lety = (y1,---,yn)" and € = (&1,--- ,€n) . Define
an operator X(7) := ((T,X1),--- ,(T,&~))" € RY, and its
adjoint operator X(z) := YN, zX;, Vz € RY. Thus, the
observation model (6) can be rewritten as

OeiK7V(i17--~

y=X(L") + & (7)

The proposed estimator. To recover the true tensor £* from
noisy observations y, we propose the following model

L € argmin, %Ily —X(L)|3, st LEX(a,p), (8

where X(«, p) is the set of tensors with limited [..-norm and
latent Schatten TT norm:

X(ap) = {L[ILllw < o Ll <0} ©)

The motivation is to select the non-spiky £ within latent Schat-
ten TT norm of radius p that has least fitting error. We suppose
parameters « and p are chosen sufficiently large such that the
true tensor L* € X(a, p).

2The Gaussian, symmetric Bernoulli, sub-Gaussian, Cauchy and exponen-
tial distributions are examples sub-exponential distributions.
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4. STATISTICAL PERFORMANCE

Before analyzing the statistical performance on the estimation
error, we first give three key lemmas. Let ¢ = ((1,--- ,(n) | €
RY be any Rademacher sequence [13].

Lemma 2 If the sample size N > 2maxy(dy log® dy.), then
with probability at least 1 — 3, ;e d; ', we have

1(&) |7 < maxgeix—1] Cr.\/log di/(Nyedy),

where cy, is a constant depending on K. in Assumption A.2.

(10)

The proof of Lemma 2 can be obtained by a combination of
the non-commutative Bernstein inequity [20] and Lemma 1.

Lemma 3 Define Y (8,6) := {T € X(1,B8)|||T||# = Dé}. We
have the following inequality for any A € Y (3, 6):

IX(A)3/N = IAIF/D = aBE[|X(O)7], (D
with probability at least 1 — exp(—coN9).

Lemma 3 shows that design operator satisfies the restricted
strong convexity condition (RSC) in Y(3,4d) [21]. Its proof
follows that of Lemma 6.1 in [22].

Lemma 4 If N > 2max; (dx log® dy), then it holds that

E[H:’E(C)H;/*] < maxge(x-1] Cr\/logdk/(vatik), (12)

where c,. is a constant.

The proof of Lemma 4 follows the proof of Lemma 6 in
[13]. Based on Lemmas 2-4, we are able to establish an upper
bound on the estimation error.

Theorem 1 If N > 2 maxy (dy log® dy) and Assumptions A.1
and A.2 hold, then for any solution L of Model (8), the estima-
tion error A := L — L* satisfies the following inequality with
probability at least 1 — 23,  ;_yydy. -

A2 log dj, 2log D
w SmaX{C’lp(a\/o)max o8 f,C’ga o8 },
D BV Nody, N

where C1, Cs are universal constants.

Following [22], the proof can be obtained by a combination
of Lemmas 2-4. According to Theorem 1, when the noise level
is comparable or dominated by « and the super-parameters
v =1/(K — 1), Vk < K — 1, we have

£ — £*|? Klogdy\ %
= < R ) 13
D <0 apmkax( N, ) (13)

For K = 2, tensor completion degenerate to matrix completion
and the upper bound is consistent with the bound for a nuclear
norm based model in Eq. (3.22) of [22]. To the best of our
knowledge, this is the first theoretical guarantee in Frobenius-
norm error ||£ — £*||r for “latent Schatten norms” based tensor
completion models [7, 23].

5. OPTIMIZATION ALGORITHM

Problem (8) can be solved via the alternating direction method
of multipliers (ADMM) [24]. However, in each iteration, one
needs the singular value thresholding (SVT) [25] of d<j X d>&
matrices with k € [K — 1], which costs O(d3%/2)) for K-th
order cubical tensors in R**4**4_ For large tensors, the
per-iteration cost is very high. Here, we present a scalable
algorithm (Algorithm 1).

Algorithm 1: APG Solver for Problem (15)

Input: £°=01V"=0,v*=0,V°=0,v"=0,2 =
1, a, p, €, Tmax, Imax-
I: Sett =0.
2: while t < Tiax do
3:  Compute G at A* by Lemma 6;
4:  Line-search: Set H; o = H;. For ¢ = 0 to Iyax do:
4.a. Compute Al by Eq. (17) at A" with H, ;;
A6 If f(A™) < Qu, (AT, A") + 0.5¢/2 then iy, = i,
and line-search loop. Otherwise, Hy ;41 = 2H; ;.
End of line-search.
5. Update V' and vt by ATt = AL L
6:  Update VL and vt by Eq. (16);
7. Update L by £ = (1 — v,)LP + 1. G;
8 t=t+1
9: end while
Output: L'+,

First, Problem (8) is re-formulated as follows:

min ¢
L,K,g,t

st K=Lg—y—X(L), (14)
1L]I1e <t < p, |IK]|oo < @, |Ig]l2 < e,

where € is a tolerance of noise. The Lagrangian is
l(E,IC,g,LV,V) =1+ <V7’C _£> + <V7%(£) +g_y>
st |l <8< p, [Klloo < o, llgll2 < e

Some algebra yields an equivalent problem as follows:

Lemma 5 The dual problem of Problem (14) is
min f(V,v) +r1(V) + ra(v), (15)
V,v

where r1(V) = a||V||1,  r2(v) = €||v||2 and

fV,v) = pmax(|X(v) = Vg —1,0) + (v, y).

Then, motivated by [26], we apply the accelerated prox-
imal sub-gradient descent (Dual-APsG) to the dual problem
(15). Specifically, we update A = (V,v) and an auxiliary pair
A = (V,V) alternatively in the ¢-th iteration as follows:

AT = argming, Qe (A, At),

A (16)
L At 4 (2 — l)z;ﬁl(AHl _ At)7

A
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where Qt (A, A) = f<A> < <A) A~ A)r(A)+ 7 |A ~ A2,
r(A) = r(V) + ra(v) = (g1( V), g2(¥) )) is the sub-
gradient at A given by Lemma 6, H, is the reciprocal of the
step size, and z; is a scalar sequence updated iteratively by
zep1 = (1+
Update (Vv According to Eq. (16), we update
AT = (VI v as follows:

/14422, ,)/2 with initialization zo = 1.
t+1).

= proxl o (V! — i (V1) /H'HY),

D (8 = (9 ),

Vt-‘rl
a7

vitt = = prox
with proximal operators of tensor /;-norm and vector lo-norm:

proxﬂ'”‘ (X) = sign(X) © max{abs(X) — 7,0},

proxﬂ'”?(x) = max{||x[[2 — Tao}HXHQ_lX’

where © denotes element-wise multiplication and we let 0/0 =
0 for the case ||x||> = 0. Besides, the sub-gradients g; (V') and
g2(¥") can be computed by the following lemma.

Lemma 6 Let A = X(¥) — V and select any k* such that
k* € argmax,c % [A<ks || Let (u” ") denote a pair
of left and right singular vectors corresponding to the largest
singular value of A <y+~. Then one particular sub-gradient of
f(V, %) with respect to V and %, denoted respectively by g1 (V)
and g>(Vv), can be computed as

91(1}) =

*
, vV

=G and g>(V)=X(9)+y, (18

where G = Licas, TR (U

Update H*. We update H' by linear search to reach the condi-
tion that f(A) is smaller than Q-+ (A, A) up to some tolerance,
ie., f(A) < Qut(A,A)+ 0.5¢0/ 2.

Update the Primal Variable. The primal variable £ is updat-
edby L1 = (1 — )L+ 74G.

Complexity and convergence analysis. The main cost lies
in computing G in Lemma 6 and the line search step. Since
only a pair of leading singular vectors are computed, per-
iteration cost of Algorithm 1 is O(Imax(K — 1) D). Thus, for
K-th order cubical tensors 7 € R¥*4*"X4_the per-iteration
cost will be O (Imax(K — 1)d"), which is significantly lower
than O(d'®%/2)) which is the per-iteration cost of SVT-based
solvers. The convergence of Algorithm 1 given in Theorem 2
is a direct consequence of the analysis in [27].

Theorem 2 The sequence of primal variables {(L')} gen-
erated by Algorithm 1 converges to a stationary point L,
and the iteration number T, in the worst case to achieve
2
)T

an e-solution is O (infue[m] (AZ” ) , where the parame-
ter M, with the Holder smoothness order v is defined as
M, = supp_ i [VF(A) = VFA)Ir/|A = Allz, with V f(¢)

denoting a sub-gradient of f(-).

6. EXPERIMENT RESULTS

Effectiveness of the proposed norm (LatentTT) is demonstrat-
ed in color image inpainting, compared with models based
on other variants of Schatten norm, i.e., tensor Schatten norm
(FaLRTC) [3], scaled latent tensor Schatten norm (Latent) [28],
tubal nuclear norm (ISTT) [13] and tensor Schatten TT norm
(TT-ADMM) [16]. Six images of size 256 x 256 x 3 are tested.
The Peak Signal Noise Ratio (PSNR) is used to measure the
quality of an estimation.

Given an image M € R4 *%2%3 we randomly sample the
pixels with probability p = 0.15 and add i.i.d. Gaussian noise
with standard deviation ¢ = 0.025||M||z/vD. We set the
weight parameters o for FALRTC by a1 : a2 : g = 1:1:0.01
as suggested in [3]. For TT-ADMM, the tensor is reshaped in
RAXAXAxAXAXAxAXAX3 59 suggested in [14]. For the proposed
LatentTT, the tensor is reshaped in R%*2%2*768 Parameters
v (k < K — 1) in Eq. (4) are set by v = 6, %%/ 3, 6,7,
where §; = min{d<x, d>,}. The image inpainting results are
shown in Fig. 1. It can be seen in Fig. 1 that the proposed norm
outperform other variants of Schatten norm in most cases.

:
i WI

///

&
l ,

= TT-ADMM

£

= FaLRTC

it $
=ISTT

u Latent u LatentTT

16 18 20 22 24 26
PSNR

Im1
Im2
Im3
Im4
Im5
Im6

Fig. 1: Color image inpainting with 15% noisy observed en-
tries. Top: six test images. Middle: visual comparison of
Image 1; left to right: the observation, FaLRTC, Latent, ISTT,
TT-ADMM and LatentTT. Bottom: PSNR values on the six
images as a quantitative comparison.

7. CONCLUSION

Based on a newly defined latent Schatten TT norm, a novel
tensor completion model is proposed. Then, a non-asymptotic
upper bound on the estimation error is established. Further,
a scalable algorithm is designed. Color image inpainting ex-
periments show that the proposed model has promising per-
formances compared with other Schatten norm based models.
The main drawback of the non-asymptotic bound is that it is in
terms of the latent Schatten TT norm of the underlying tensor
rather than its TT-rank, which motivates the future work.
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