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ABSTRACT
This paper introduces the use of adaptive restart to accelerate
iterative hard thresholding (IHT) for low-rank matrix comple-
tion. First, we analyze the local convergence of accelerated
IHT in the non-convex setting of matrix completion problem
(MCP). We prove the linear convergence rate of the acceler-
ated algorithm inside the region near the solution. Our anal-
ysis poses a major challenge to parameter selection for accel-
erated IHT when no prior knowledge of the “local Hessian
condition number” is given. To address this issue, we pro-
pose a simple adaptive restart algorithm for MCP to recover
the optimal rate of convergence at the solution, as motivated
in [1]. Our numerical result verifies the theoretical analysis
as well as demonstrates the outstanding performance of the
proposed algorithm.

Index Terms— Matrix completion, SVD, Iterative hard
thresholding, Nesterov’s Accelerated Gradient.

1. INTRODUCTION

Low-rank matrix completion is a fundamental problem that
arises in many areas of signal processing and machine learn-
ing such as collaborative filtering [2], system identification [3]
and dimension reduction [4]. The problem can be explained
as follows. LetM ∈ Rm×n be the underlying matrix with low
rank r and a subset its entries S = {(i, j) |Mij is observed}.
We aim to recover the unknown entries of M , belonging to
the complement set Sc. Alternatively, one would solve the
following optimization problem:

min
X∈Rm×n

rank(X) s.t. Xij = Mij , ∀(i, j) ∈ S. (1)

In one of the pioneer works, Candès and Recht [5] introduced
a convex relaxation to the original non-convex matrix com-
pletion problem and presented conditions under which the
solutions of the two problems coincide. Moreover, they pro-
vided an expression for the number of known entries required
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to recover the original matrix. This breakthrough leads to
the class of proximal-type algorithms for nuclear norm min-
imization [6–9] with rigorous mathematical guarantees and
extensions of classic acceleration techniques. The disad-
vantage of convex-relaxed methods, nonetheless, is either
high computational complexity (for interior-point methods)
or slow convergence rate (often sublinear for proximal-type
methods). To address those issues, iterative hard threshold-
ing has been proposed to directly solve the non-convex rank
minimization problem [10–12]. Each IHT iteration takes one
step in the direction of the gradient and one step projecting
onto the set of rank-r matrices. Since the process is akin to
hard-thresholding singular values, we refer to the methods
using it as iterative hard thresholding algorithms, as opposed
to their aforementioned soft thresholding counterparts. When
the solution is low-rank, IHT is extremely efficient in both
computational complexity and empirical convergence (linear
rate). Notwithstanding, mathematical guarantees of non-
convex IHT algorithms for MCP are generally restricted to
local convergence [13, 14].

Despite the similarity between IHT and projected gradi-
ent methods, there have been but a few efforts in accelerating
IHT and characterizing the performance thereby. In a very
recent work, Khanna and Kyrillidis [15] introduces the use of
acceleration to plain IHT yet in the context of rank minimiza-
tion with affine constraints (ARMP). The authors provided
convergence guarantees based on restricted strong convexity
and smoothness properties of the loss function. However, as
pointed out in [5], the results and techniques for ARMP can-
not apply to MCP for which the restricted properties does not
hold. Additionally, they left an open question on the opti-
mal momentum step sizes that guarantee better performance
over plain IHT. While determining an optimal tuning is NP-
hard [16], our experiment indeed shows that a careless choice
of step sizes might worsen the performance of plain IHT in
a matrix completion setting. Thus, we believe answering this
question is the key to the practicality of accelerated IHT in
both ARMP and MCP.

In this paper, we consider IHT for solving low-rank ma-
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trix completion and connect the classic theory of accelerated
gradient methods with recent analyses of the local conver-
gence of plain IHT in [13]. The contribution of our work is
threefold: (i) we propose a variant of Nesterov’s Accelerated
Gradient in a MCP-IHT setting and analyze the local con-
vergence thereof, (ii) we identify the choice of momentum
step sizes that guarantees the optimal acceleration, (iii) we
propose an adaptive restart algorithm that can asymptotically
recover the local rate in practice. The numerical experiment
verifies our theoretical analysis and demonstrates the superior
performance of the proposed algorithm compared to common
existing methods for low-rank matrix completion.

2. PRELIMINARIES

We begin with a review of some preliminaries on iterative
hard thresholding methods for low-rank matrix completion.

Definition 1. Let M ∈ Rm×n(m ≥ n) be a rank-r matrix
and M = UΣV T be its singular value decomposition (SVD),
where Σ is a diagonal m× n matrix with diagonal entries

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0

and U, V arem×m and n×n unitary matrices, respectively.
We partition U,Σ, V as follows:

U =
[
U1 U2

]
,Σ =

Σ1 0

0 Σ2

 , V =
[
V1 V2

]
where Σ1 = diag(σ1, . . . , σr), Σ2 = 0; U1, V1 and U2, V2
are semi-unitary matrices corresponding to the partition of
Σ.

Definition 2. A row selection matrix S ∈ Rs×m(s ≤ m) is
a semi-unitary matrix obtained by a subset of s rows from the
identity matrix Im. Left-multiplying a matrix X ∈ Rm×n by
S returns an s× n matrix corresponding to set of rows in X .

Definition 3. Sampling operator XS maps the matrix entries
not in S to 0:

[XS ]ij =

{
Xij if (i, j) ∈ S,
0 if (i, j) ∈ Sc.

Definition 4. LetX ∈ Rm×n be a matrix with arbitrary rank.
Define the rank-r projection of X as:

Pr(X) ∈ argmin
Y ∈Rm×n

‖Y −X‖F s.t. rank(Y ) ≤ r.

The solution of this minimization is obtained by computing
the top r singular values and vectors of X [17]. More-
over, this projection is unique if either σr(X) > σr+1(X)
or σr(X) = 0, where σr(.) denotes the r-th largest singular
value. In the rest of this paper, we implicitly refer the solution
of problem (1) and its SVD to the notations in Definition 1.
This also implies our assumption that rank(M) = r. Fur-
thermore, we denote the cardinality of S by s and the row
selection matrix corresponding to Sc by Sc ∈ R(mn−s)×mn.

Algorithm 1 Iterative Hard Thresholding

1: X(0) = MS
2: for k = 1, 2, . . . do
3: X(k) = Pr

(
X(k−1) − αk[X

(k−1) −M ]S
)

3. BACKGROUND

3.1. ARMP-IHT versus MCP-IHT

Iterative hard thresholding for low-rank matrices was first
proposed in the context of ARMP. In [10], Jain et. al. consid-
ered the following robust formulation of ARMP:

min
X∈Rm×n

1

2
‖A(X)− b‖22 s.t. rank(X) ≤ r (2)

where A : Rm×n → Rs is an affine transformation and b ∈
Rs is the set of indirect observations. Adapting the idea of
projected gradient descent, the authors proposed the Singular
Value Projection (SVP) algorithm with the basic update

X(k) = Pr(X(k−1) − ηkAT (A(X(k−1))− b)).

Under assumptions on Restricted Isometry Property (RIP) of
the affine operator A, the authors showed that their algorithm
converges to the solution at a linear rate. In an independent
work, Goldfarb and Ma [11] proved the geometric conver-
gence for a special case of unit step size. Later on, there
have been efforts in improving the performance of ARMP-
IHT, namely Normalized IHT [18] and accelerated IHT [15].
All of these works use the standard RIP assumptions in order
to prove the global convergence.

The matrix completion problem is a special case of
ARMP where the affine operator A is a sampling operator:

min
X∈Rm×n

‖XS −MS‖2F s.t. rank(X) ≤ r. (3)

Unfortunately, this operator does not satisfy RIP in general,
shattering the global convergence guarantees established in
ARMP. Still, Jain et. al. suggested to apply SVP for solv-
ing MCP (see Algorithm 1) and made a conjecture that SVP
converges linearly to the solution matrix M with high prob-
ability, provided M is incohenrent [10]. It took some time
before the first theoretical guarantee is obtained in [13], con-
sidering a special case of SVP, called IHTSVD algorithm.
When the step size αk equals 1, one can simplify the gradi-
ent update in Algorithm 1 as X(k−1) − αk[X(k−1) −M ]S =
[X(k−1)]Sc +MS . For convenience, we call this operator the
observation projection, denoted by PM,S . It simply sets en-
tries of X(k) that are in S to those corresponding values of
M . The IHT iterates now serve as alternating projections be-
tween Pr and PM,S . More importantly, the authors provided
a quantitative analysis on the local convergence of IHTSVD,
based on the approximation of rank-r projection operator near
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the solution. Let us restate their results in Theorem 1 and
Theorem 2. We use our own notations for the purpose of con-
sistency.

Theorem 1. (Rephrased from [13]) Given the matrix M in
Definition 1. Denote ε = min

σi>σi+1

{σi−σi+1}. Let ∆ ∈ Rm×n

be a perturbation matrix such that ‖∆‖F <
ε
2 . Then the rank-

r projection of M + ∆ is given by

Pr(M + ∆) = M + ∆− U2U
T
2 ∆V2V

T
2 +Q(∆)

where Q : Rm×n → Rm×n satisfies ‖Q(∆)‖F = O(‖∆‖2F ).

Theorem 2. (Rephrased from [13]) If the matrix Sc(V2⊗U2)
has full rank, then Algorithm 1 with a unit step size converges
toM locally at a linear rate 1−σ2, where σ = σmin

(
Sc(V2⊗

U2)
)
. In other words, there exists a neighborhood E(M) of

M and a constant C such that if X(0) ∈ E(M), then∥∥∥X(k) −M
∥∥∥
F
≤ C

(
1− σ2

)k ∥∥∥X(0) −M
∥∥∥
F
.

3.2. Nesterov’s Accelerated Gradient for ARMP-IHT

We consider the plain IHT as a first-order gradient method
and apply momentum techniques to accelerate it. In [19],
Nesterov demonstrated a simple modification to gradient de-
scent that provably improves the convergence rate dramati-
cally. The method, known as Nesterov’s Accelerated Gradient
(NAG), can be described as follows

x(k) = y(k−1) − αk∇f(y(k−1))

y(k) = x(k) + βk(x(k) − x(k−1))

where f : Rn → R is a continuous differentiable, smooth
convex function to be minimized. For optimizing an µ-
strongly convex, L-smooth function, it is well-known that
NAG obtains a linear convergence rate at 1 −

√
µ/L by

setting [19]

αk =
1

L
, βk =

1−
√
µ/L

1 +
√
µ/L

. (4)

This scheme is often called optimal since it achieves the lower
complexity bound for first-order methods on minimizing a
strongly convex, smooth function derived by Nemirovski and
Yudin [20].

The idea of accelerating IHT has recently been studied
in [15, 21] for ARMP. It is similar in spirit to the Acceler-
ated Proximal Gradient algorithm for solving nuclear norm
regularized linear least square problems [9]. While these al-
gorithms enjoy the convexity of the norm operator and copi-
ous theoretical guarantees of proximal methods, the burden of
non-convex projections over the rank constraint bears heavily
on IHT methods. Moreover, as we mentioned, convergence
guarantee for accelerated ARMP-IHT in [15] does not hold
for MCP-IHT. To the best of our knowledge, there is no con-
vergence analysis for accelerated IHT in a matrix completion
setting to date.

Algorithm 2 NAG-IHT

1: X(0) = Y (0) = MS
2: for k = 1, 2, . . . do
3: X(k) = Pr

(
Y (k−1))

4: Y (k) = PM,S
(
X(k) + βk(X(k) −X(k−1))

)

4. ACCELERATING MCP-IHT

In this section, we first describe an accelerated scheme for
Algorithm 1 and provide some analysis of the local conver-
gence of the algorithm. It remains a challenging problem on
parameter selection that guarantees better performance of ac-
celerated over plain IHT. To address this issue, we propose
an adaptive restart technique that allows us to asymptotically
recover the optimal rate of convergence in practice.

4.1. An NAG-variant of MCP-IHT

Motivated by the result in Theorem 2, we propose an NAG-
variant of IHT in Algorithm 2. First, notice the specific choice
of gradient step size (αk = 1) unveils the observation pro-
jection PM,S . Interestingly, this choice of αk matches the
setting in (4), as the Lipschitz constant of the sampling oper-
ator is L = 1. Second, the order at each iteration guarantees
the sequence {Y (k)} is consistent with the observation S, i.e.,
Y

(k)
S = MS . As a result, the error matrix depends only on the

entries in Sc, disentangling the subsequent analysis of con-
vergence. Finally, the algorithm terminates when a stopping
criteria is met, returning Y (k) as an estimate of the matrix.
We state our main theoretical result for the convergence of
NAG-IHT in Theorem 3.1 Note that the convergence rate is
described in a closed-form, which can be verified through ex-
periments. By constrast, RIP constants in the standard anal-
ysis for ARMP are NP-Hard to compute [16]. Mainly, the
optimal fixed step size for NAG-IHT is identified, guarantee-
ing the better performance of accelerated schemes over plain
IHT in theory, i.e., 1− σ versus 1− σ2.

Theorem 3. If the matrix Sc(V2 ⊗ U2) has full rank, then
Algorithm 2 with momentum step size βk = 1−σ

1+σ converges to
M locally at a linear rate 1 − σ, where σ = σmin(Sc(V2 ⊗
U2)). In other words, there exists a neighborhood E(M) of
M and a constant C such that if Y (0) ∈ E(M), then∥∥∥Y (k) −M

∥∥∥
F
≤ C

(
1− σ

)k ∥∥∥Y (0) −M
∥∥∥
F
.

Further, this is the optimal rate for any fixed momentum step
size in Algorithm 2.

1The proofs of Theorem 1 and Theorem 3 are given in at
http://web.engr.oregonstate.edu/∼vutru/nag appendix.pdf
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Algorithm 3 ARNAG-IHT

1: t = 1, X(0) = Y (0) = MS , f0 =
∥∥∥X(0)
S −MS

∥∥∥2
F

2: for k = 1, 2, . . . do
3: X(k) = Pr

(
Y (k−1))

4: Y (k) = PM,S
(
X(k) + t−1

t+2 (X(k) −X(k−1))
)

5: fk =
∥∥∥X(k)
S −MS

∥∥∥2
F

6: if fk > fk−1 then t = 1 else t = t+ 1

4.2. An adaptive restart scheme for NAG-IHT

Theorem 3 provides a theoretical guarantee for NAG-IHT but
it implies that fixed-step-size strategy is impracticable when
the value of σ is unknown. In this section, we propose a
simple way to work around this issue. The idea stems from
adaptive restart techniques for accelerated gradient schemes
[1]: reset the momentum back to zero whenever we observe
an increase in the function value. This facile heuristic was
shown to asymptotically recover the local rate of convergence
of NAG on minimizing a strongly convex smooth function
and is generally used in sparse signal recovery. To the best
of our knowledge, this work is the first to adopt adaptive
restart heuristics to accelerate IHT. We describe our approach,
named ARNAG-IHT, in Algorithm 3. It is important to high-
light that the momentum need to grows from one iteration to
the next in order to apply restart techniques. As a result, we
use the incremental step size βk = t−1

t+2 recommended in opti-
mizing smooth convex functions [19]. The difference comes
with conditional restarts (setting t = 1) whenever the square
loss increases. Clearly, all three aforementioned algorithms
share the same computational complexity per iteration.

5. EMPIRICAL RESULT

This section presents a numerical example to demonstrate our
analysis for low-rank matrix completion. First, we generate a
solution matrix M ∈ Rm×n of rank r by taking the product
of anm×r matrix and an r×nmatrix, each having i.i.d. nor-
mally distributed entries. Next, we sample the observation set
S uniformly at random. We compare ARNAG-IHT with the
following methods: SVT [6], SVP-NewtonD [10], NIHT [18]
and IHTSVD [13]. Although the analyses of SVP-NewtonD
and NIHT only apply for ARMP, it is worth examining their
empirical performance on MCP. In our own implementation
of these algorithms, we use the set of parameters as suggested
by the authors. For SVT, we set the step size δ = 1.2mns
and the threshold τ = 5

√
mn. For SVP-NewtonD, we set the

step size ηt = mn
1.2s . NIHT, IHTSVD and ARNAG-IHT are

parameter-free. Finally, we add NAG-IHT with two different
fixed step sizes βk = 1−σ

1+σ and βk = k−1
k+2 for comparison.

Figure 1 illustrates the Frobenius norm of the error matrix
as a function of the number of iterations. The dashed lines
correspond to the theoretical convergence of IHTSVD (pur-
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Fig. 1. The distance to the solution (in log-scale) as a func-
tion of the number of iterations for different algorithms (solid)
and their corresponding theoretical bounds up to a constant
(dashed). The parameters are set to m = 50, n = 40, r = 3,
and s = 1000. Asterisks indicate algorithms using theoretical
step sizes that are not available in practice.

ple) at rate 1 − σ2 and NAG-IHT with step size βk = 1−σ
1+σ

(green) at rate 1 − σ. As can be seen from the figure, both
of the algorithms match the performance predicted in theory.
SVT exhibits the slowest convergence due to the conserva-
tive nature of proximal-type algorithms. By contrast, all IHT
algorithms enjoy a fast convergence at linear rates. Without
acceleration, SVP-NewtonD and NIHT are clearly faster than
IHTSVD. This can be explained by the fact that IHTSVD is a
special case of SVP when the gradient step size is 1, whereas
SVP-NewtonD and NIHT are improved versions of SVP with
adaptive step sizes. Notwithstanding, ARNAG-IHT outper-
forms all other algorithms, asymptotically recovering the con-
vergence rate at 1 − σ. It approaches the “ideal” NAG-IHT
with optimal step size in this experiment. Finally, we can
observe the periodic behavior of momentum by setting the
step size βk = k−1

k+2 , as experienced in the original version of
NAG. However, it can be seen in Fig. 1 that this setting does
not generally help improve the convergence of plain IHT.

6. CONCLUSION AND FUTURE WORK

We proposed the use of NAG to boost the performance of IHT
for low-rank matrix completion. We analyzed the local con-
vergence of NAG-IHT and established the optimal step size
to guarantee faster convergence over plain IHT. We further in-
troduced an adaptive restart algorithm that helps recover the
optimal linear rate of convergence in practice. Our numerical
evaluation showed evidence that the proposed scheme dra-
matically improves the performance of IHT for matrix com-
pletion problem. Still, understanding when and how our ap-
proach works in case the input matrix is noisy and not close
to being low-rank is left as an open question for future work.
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