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ABSTRACT

In this paper, we use the perturbed gradient based alternating
minimization for solving a class of low-rank matrix factorization
problems. Alternating minimization is a simple but popular
approach which has been applied to problems in optimization,
machine learning, data mining, and signal processing, etc. By
leveraging the block structure of the problem, the algorithm updates
two blocks of variables in an alternating manner. For the nonconvex
optimization problem, it is well-known the alternating minimization
algorithm converges to the first-order stationary solution with a
global sublinear rate. In this paper, a perturbed alternating proximal
point (PA-PP) algorithm is proposed, which 1) minimizes the smooth
nonconvex problem by updating two blocks of variables alternatively
and 2) adds some random noise occasionally under some conditions
to extract the negative curvature of the second-order information of
the objective function. We show that the proposed PA-PP is able to
converge (with high probability) to the set of second-order stationary
solutions (SS2) with a global sublinear rate, and as a consequence
quickly finds global optimal solutions for the problems considered.

Index Terms— Matrix factorization, perturbed alternating
proximal point (PA-PP), spline function, convergence rate,
first-order stationary (SS1), second-order stationary (SS2)

1. INTRODUCTION

Algorithms that can escape from strict saddle points, which are
stationary points whose Hessian matrices have negative eigenvalues,
have wide applications. Many recent works have analyzed the saddle
points in machine learning problems [1]. Such as learning in shallow
networks, the stationary points are either global minimum points or
strict saddle points. Previous work in [2] has shown that the saddle
points in tensor decomposition are indeed strict saddle points. Also,
it has been shown that any saddle points are strict in dictionary
learning and phase retrieval problems in [3]. A recent work [4]
proposed a unified analysis of saddle points for a board class of
low-rank matrix factorization problems, which indicates that these
saddle points are strict. The landscape of the saddle points of the
asymmetric matrix factorization has been studied comprehensively
in [5]. However, in these unconstrained problems, the objective
function is quartic with respect to the optimization variables so that
the function has no global Lipschitz continuous. In this paper, we
consider a new loss function that has the same saddle points as the
original one [6].

By leveraging the block structure of the optimization problems,
such as matrix factorization [7, 8], tensor decomposition, matrix
completion [9,10], block coordinate descent (BCD)-type algorithms
have shown superiority than other methods. Under relatively mild
conditions, it is well-known that the BCD-type of algorithms
converges to the first-order stationary (SS1) solution in a

global sublinear rate [11]. However, despite its popularity and
significant recent progress in understanding its behavior, it remains
unclear whether BCD-type algorithms can converge to the set of
second-order stationary solutions (SS2) with a provable global
convergence rate, even for the simplest problem with two blocks of
variables.

1.1. Related work
Many recent works have been focused on the performance analysis
and/or design of algorithms with convergence guarantees to
local minimum points/SS2 for nonconvex optimization problems.
These include the trust region method [12], cubic regularized
Newton’s method [13, 14], a mixed approach of the first-order
and second-order methods [15], and gradient descent with
one-step escaping (GOSE) [16] by the calculation of eigenvectors,
etc. However, these algorithms typically require second-order
information, therefore they incur high computational complexity
when the problem dimension becomes large.

There has been a line of work on stochastic gradient
descent (SGD) algorithms, where properly scaled Gaussian noise
is added to the iterates of the gradient at each time [also
known as stochastic gradient Langevin dynamics, (SGLD) [17]].
However, these algorithms require a large number of iterations
with O(1/ϵ4) steps to achieve the optimal point. There are
fruitful results that show some carefully designed stochastic
algorithms can escape from strict saddle points efficiently, such
as NEgative-curvature-Originated-from-Noise (NEON) [18] and
NEON2 [19].

On the other hand, there is also a line of work analyzing the
deterministic gradient descent (GD) type method. With random
initialization, it has been shown that GD only converges to SS2
for unconstrained smooth problems [20]. More recently, BCD,
block mirror descent and proximal BCD have been proven to almost
always converge to SS2 with random initialization [21, 22], but
there is no convergence rate reported. Unfortunately, a follow-up
study indicated that GD requires exponential time to escape from
saddle points for certain pathological problems [23]. Adding some
noise occasionally to the iterates of the algorithm is another way of
finding the negative curvature. A perturbed version of GD has been
proposed with convergence guarantees to SS2 [24], which shows a
faster provable convergence rate than the ordinary gradient descent
algorithm with random initialization.

1.2. Contribution of this Work
In this paper, we design and analyze a perturbed alternating
minimization algorithm for solving a class of block structured
unconstrained nonconvex problem, namely perturbed alternating
proximal point (PA-PP). Through the perturbation of alternating
minimization, the algorithm is guaranteed to converge to a set of
SS2 of a nonconvex problem with high probability. By utilizing
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the matrix perturbation theory, the convergence rate of the proposed
algorithm is also established, which shows that the algorithm
takes Õ(1/ϵ7/3) iterations to achieve an (ϵ, ϵ1/3)-SS2 with high
probability, where Õ(·) hides factor polylog(d) that is polynomial
of the logarithm of problem dimension d.

The main contributions of this work are listed as follows:
1. The landscape of a class of nonconvex problems is studied. A

new structure of loss functions is considered so that the global
Lipschitz continuity of the objective functions is satisfied.

2. To the best of our knowledge, it is the first time that the
convergence analysis shows that some variants of alternating
minimization (using the first-order information) can converge
to SS2 for nonconvex optimization problems in a sublinear
convergence rate.

3. Numerical results verify the effectiveness of the perturbed
first-order algorithms of escaping strict points.

2. MOTIVATION OF THIS WORK

From a geometric view of the loss functions in machine learning
problems, there are two types of undesired critical points: (1) local
minima that are not global minima; (2) saddle points. If all critical
points of a function f(X) are either global minima or strict saddle
points, we say that f(X) has benign landscape [25], which is the
main property interested in this paper.

2.1. Problem formulation
We consider a general asymmetric low-rank matrix factorization
problem as follows,

minimize
U∈Rn×r,V∈Rm×r

f(U,V) , 1

2
∥UVT −M∗∥2F , (1)

where M∗ denotes the data matrix. It is not hard to see that there is a
scaling ambiguity between U and V. Recent works [5] have shown
that after adding a proper regularizer, the reformulated problem will
not change the global optimal solution of the original one. In order
to make the notation of the function concise, let W , [U;V]. Then,
the reformulated problem is given by

minimize
U∈Rn×r,V∈Rm×r

g(W) , f(U,V) + ρ(U,V), (2)

where
ρ(U,V) , µ

4
∥UTU−VTV∥2F .

This regularizer is able to enforce the size difference between U and
V as small as possible.

The problem has a wide application in areas of machine learning
and signal processing. To be specific, we give the following two
interesting examples. Note that both these objective functions have
benign landscape.

2.2. Motivated examples
Matrix sensing: the matrix sensing problem with the low-rank
matrix factorization approach can be formulated as

minimize
U∈Rn×r,V∈Rm×r

1

2
∥A(UVT −M∗)∥2 + ρ(U,V), (3)

where mapping A(·) satisfies the restricted isometry property [26].
Two-layer linear neural network: given a set of data points

{xi,yi}mi=1 of size m, we wish to fit a two-layer linear network
using the quadratic loss as follows,

minimize
U∈Rn×r,V∈Rm×r

k∑
i=1

∥yi −UVTxi∥22 = ∥Y −UVTX∥2F , (4)

where X , [x1, . . . ,xk] ∈ Rn×k and Y , [y1, . . . ,yk] ∈
Rm×k.

2.3. Challenges of matrix factorization
Since the objective function is quartic with respect to W, it lacks
the global Lipschitz continuity. However, in most algorithms’
convergence analysis, Lipschitz continuity is the key assumption,
which quantifies how fast of the objective function can change.

3. LANDSCAPE OF THE LOSS FUNCTION

The landscape of problem (1) has been studied in [5]. From [5,
Theorem 1], we know that when ∥WWT∥F > 20

9
∥M∗∥F , we have

∥∇Wg(W)∥ ≥ ∥WWT∥3/2F , meaning that there are no saddle
points whose the size of the gradient is zero. Also, it is shown in [5]
that all saddle points of the problems are strict and within a ball with
some certain radius, and every local optimal point of this problem is
a global optimal. Unfortunately, the objective function has no global
Lipschitz continuity. Instead, we will consider the following new
formulation.

In this work, we consider a loss function l(W) which has form√
g(W) when

√
g(W) ≥ 2τ, τ > 0 and g(W) when

√
g(W) ≤

τ and use some spline function [27, Chapter 5.1] that smoothly
connects functions

√
g(W) and g(W) within region [τ, 2τ ], where

τ denotes the radius of the ball that contains all stationary point
of the problem. When

√
g(W) ≤ 2τ , function has the Lipschitz

continuity since the it is a bounded set. When ∥W∥ is large, we
have the following lemma.
Lemma 1. Function

√
g(W) is Lipschitz gradient continues, when√

g(W) ≥ 2τ where τ = 3∥M∗∥F .
The proof of Lemma 1 is elementary (i.e., checking the

boundedness the second derivative of the objective function) but
cumbersome. Due to the page limit, details are omitted.

Also, we need to verify that l(W) has no critical point within
[τ, 2τ ]. Therefore, as long as the algorithm can escape from the
strict saddle points, the algorithm will converge to the global optimal
solution.

3.1. Loss function
Consider loss function l(x) that is defined for argument x ≥ 0 as

l(x) ,


x2 + α, if 0 ≤ x ≤ τ,

p(x), if τ ≤ x ≤ 2τ,

βx, if x ≥ 2τ,

(5)

where p(·) denotes the spline function and α, β are parameters such
that the spline function can connect the two functions g(W) and√

g(W) smoothly.

3.2. The choice of τ
First, we need to determine the size of τ . By the definition of g(W)
and W, we have√

g(W) =

√
1

2
∥UVT −M∗∥2 + 1

8
∥UTU−VTV∥2

≤
√
∥UVT∥2 + ∥M∗∥2 + 1

4
∥UTU∥2 + 1

4
∥VTV∥2

≤
√

3

2
∥WWT∥2 + ∥M∗∥2. (6)

From [5, Theorem 1], we know that when ∥WWT∥F ≥ 20
9
∥M∗∥F

there is no SS1 point, which implies that all critical points of problem
(2) are within√

g(W) ≤
√

3

2
∥WWT∥2 + ∥M∗∥2

<
√

7.5∥M∗∥2 + ∥M∗∥2 ≤ 3∥M∗∥F . (7)
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Therefore, we choose τ , 3∥M∗∥F .

3.3. Objective function

For the convenience of the expression, let h(W) ,
√

g(W). Then,
we have

∇Wh(W) = ∇W

√
g(W) =

1

2

∇Wg(W)

h(W)
. (8)

By leveraging the form of function l(x), we can construct the new
objective function as follows:

fh(W) ,


h2(W) + α, if h(W) ≤ τ,

p(h(W)), if τ ≤ h(W) ≤ 2τ,

βh(W), if h(W) ≥ 2τ.

(9)

Taking the gradient and second-order derivative of the objective
function, we have

∇Wfh(W) =l′(h(W))∇Wh(W) (10)

∇2
Wfh(W) =l′′(h(W))∇Wh(W)∇Wh(W)T

+ l′(h(W))∇2
Wh(W),

which implies that the first- and second- gradients of function
fh(W) and h(W) with respect to variable W are only scaled by the
new loss function. It is the key idea of designing such loss function
so that the gradient properties of h(W) is preserved by fh(W).

Finally, we only need to construct the spline function p(·) to
satisfy the following boundary properties:

P1 : p(τ) = τ2 + α and p(2τ) = 2βτ ,
P2 : p′(τ) = 2τ and p′(2τ) = β,
P3 : p′′(τ) = 2 and p′′(2τ) = 0,
P4 : p′([τ, 2τ ]) > 0.

Theorem 1. The loss function fh(W) shown in (9) has the global
Lipschitz continuity with constant L and all critical points of the
function fh(W) have a one-to-one correspondence to the original
loss function h2(W), where the spline function is

p(x) = − 1

3τ
(x− τ)3 + (x− τ)2 + 2(x− τ) +

10

3
τ2, (11)

and parameters τ = 3∥M∗∥F , β = 3τ , and α = 7
3
τ2.

Proof. : Consider a third-order polynomial

p(x) = a(x− τ)3 + b(x− τ)2 + c(x− τ) + d. (12)

From P3, we can get a = − 1
3τ

and b = 1. Similarly, we can obtain
c = 2τ and β = 3τ from P2. Finally, we have d = 10

3
τ2 and

α = 7
3
τ2. Therefore, we have

p(x) = − 1

3τ
(x− τ)3 + (x− τ)2 + 2τ(x− τ) +

10

3
τ2. (13)

Also, we know

p′(x) = − 1

τ
(x− τ)2 + 2x, (14)

where the two roots of p′(x) = 0 are (2 ±
√
3)τ , implying that

p′([τ, 2τ ]) > 0. Hence, we have

∥∇Wfh(W)∥ = p′(h(W))∥∇Wh(W)∥
(a)

≥ 0 (15)
where (a) is true because from (8) we can know that the stationary
points of problems g(W) and h(W) are the same within region
[τ, 2τ ] and from [5, Theorem 1] we know that there is no
critical points of h(W) within region [τ, 2τ ]. Therefore, we can
conclude that no critical points are involved in this region for
the constructed function p(W). Applying the geometric structure
results of the objective function shown before, we obtain the claim
of Theorem 1.

Algorithm 1 Perturbed Alternating Proximal Point (PA-PP)

Input: W(0), ν, r, gth, fth, tth
for t = 0, 1, . . . do

U(t+1) = argminU fh(U,V(t)) + ν
2
∥U−U(t)∥2

V(t+1) = argminV fh(U
(t+1),V) + ν

2
∥V −V(t)∥2

if ∥W(t+1) −W(t)∥ ≤ g2th and t− tp > tth then
W̃(t) ←W(t) and tp ← t

W(t) = W̃(t) + ξ(t), ξ(t) follows B0(r)

U(t+1) = argminU fh(U,V(t)) + ν
2
∥U−U(t)∥2

V(t+1) = argminV fh(U
(t+1),V) + ν

2
∥V −V(t)∥2

end if
if t− tp = tth and fh(W

(t))− fh(W̃
(tp)) > −fth then

return W̃tp

end if
end for

Remark 1. It is worth mentioning that the proposed loss function
structure is not only applied in the asymmetric matrix factorization
problems but also an option for symmetric matrix factorization
related problems, phase retrieval problems, over-parameterization
problems, etc.

4. ALGORITHM DESIGN

The loss function has been constructed well enough. Now, we need
to develop an efficient algorithm by exploiting the block structure of
the problem such that it is able to escape from the strict saddle points
quickly. Before showing the details of the algorithm, we first need
some assumptions of the objective function.
Assumption 1. Function f(·) is L-smooth, ρ-Hessian Lipschitz,
and block-wise smooth with gradient Lipschitz constants {LU , LV }.

The function is called block-wise smooth with gradient
Lipschitz constant LV , if
∥∇Vf(W,V)−∇Vf(W,V′)∥ ≤ LV ∥V −V′∥, ∀V,V′

or with gradient Lipschitz constant LU , if
∥∇Uf(U,V)−∇Uf(U′,V)∥ ≤ LU∥U−U′∥, ∀U,U′.

Further, let Lmax , max{LU , LV }. Note that Lmax ≪ L in many
block structured nonconvex optimization problems.

4.1. Algorithm Description
PA-PP is proposed in this section. It is a simple algorithm, which
basically implements the ordinary alternating minimization at each
iteration and add some random noise occasionally to extract the
negative curvature when some conditions (iterates are very close to
the first-order stationary points) are satisfied.

The details of the implementation of the PA-PP is given in
Algorithm 1, where the regularizer is ν = Lmax/cmax, the radius
of the ball added is r = (c3/χ3)(ρϵ/LmaxP); the threshold of
gradient size is gth = c2ϵ/(χ3P); the threshold of the decrease
of the objective value is fth = c5ϵ2/(Lmaxχ

6P2); the threshold
of the number of iterations that the algorithm will not add any
perturbation is tth = Lmaxχ/(c

2(Lmaxρϵ)
1
3 ); and parameters P ,

(1 + L log(2d)/Lmax) and χ , 6max{log(P
2dL

5/3
max∆f

c5ρ1/3ϵ7/3δ
), 4}.

Remark 2. Note the subproblems shown in the update of
U(t+1) and V(t+1) are the least squares problems, which have the
closed-form solutions. Solving these problems may not need to
calculate the gradient of the objective function, resulting in a low
computational complexity.
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4.2. Convergence Rate
Due to the page limit, the details of the convergence analysis will
be given in the journal version (see preprint [28] or [29]). Here, we
only give the result as the following.

Theorem 2. Under Assumption 1, there exists a constant cmax such
that: for any δ ∈ (0, 1], ϵ ≤ L2

max/ρ, ∆f , fh(W
(0)) − f⋆, and

constant c ≤ cmax, with probability 1− δ, the iterates generated by
PA-PP converge to an ϵ-SS2 W satisfying

∥∇fh(W)∥ ≤ ϵ, and λmin(∇2fh(W)) ≥ −(Lmaxρϵ)
1/3

in the following number of iterations:

O

(
L

5/3
maxP2∆f

ρ1/3ϵ7/3
log7

(
P2dL

5/3
max∆f

c5ρ1/3ϵ7/3δ

))
(16)

where f⋆ denotes the global minimum value of the objective
function.

Remark 3. Combining Theorem 2 and Theorem 1, we can
conclude that PA-PP converges to the global optimal solution of the
matrix factorization problem considered with high probability.

4.3. Connection with Existing Works

In Theorem 2 we characterized the convergence rate to an
(ϵ, ϵ1/3)-SS2. We can also translate this bound to the one for
achieving an (ϵ,

√
ϵ)-SS2, and in this case PA-PP needs Õ(1/ϵ3.5)

iterations. Compared with the existing recent works [24], the
convergence rate of PA-PP is slower than GD. The main reason
is the fact that different from GD-type algorithms, PA-PP cannot
fully utilize the Hessian information because they never see a full
iteration. A similar situation happens for SGD-type of algorithms
which also cannot get the exact negative curvature around strict
saddle points.

However, the convergence rate of PA-PP is still faster than
SGD [2], SGLD [17], NEON+SGD [18], and NEON2+SGD [19]
to achieve an (ϵ,

√
ϵ)-SS2. We emphasize that PA-PP represents the

first BCD-type algorithms with the convergence rate guarantee to
escape from the strict saddle points efficiently. At this point, it is
unclear whether our obtained rate is the best that is achievable, and
the question of whether the resulting rate can be improved will be
left as the future work.

5. NUMERICAL RESULTS

In this section, we will use several numerical results to illustrate
the effectiveness of the proposed algorithm on escaping strict saddle
points.
5.1. A toy example
First, we present a simple example that shows there are two equal
local optimal solutions, i.e., the global optimal points. Consider a
nonconvex objective function, i.e.,

f(w) = wTAw +
1

4
∥w∥4, (17)

where w = [u; v]. Here, we can easily show the shape of objective
function (17) in the two dimensional (2D) case in Figure 1 (left),
where A = [1 2; 2 1] ∈ R2×2. It can be observed clearly that
there exists a strict saddle point at [0, 0] and two other local optimal
points. We randomly initialize the algorithms around strict saddle
point [0, 0]. The convergence comparison between GD and PA-PP is
shown in Figure 1 (right). It can be observed that PA-PP converges
faster than GD to the global optimal point. Note that if we initialize
the iterates exactly at the origin, GD will not move but PA-PP can
still converge to the global optimal solution.

-100

0

100

200

5

300

400

500

600

30 210-1-2-5 -3

GD

PA-PP

Fig. 1. Convergence comparison between GD and PA-PP, where ϵ = 10−4,
gth = ϵ/10, ν = 50, tth = 10/ϵ1/3, r = ϵ/10.

PA-PP

PA-PP

PA-PP

Fig. 2. Convergence comparison among GD, PGD and PA-PP for
asymmetric matrix factorization, where ϵ = 10−10, gth = ϵ/10, tth =

10/ϵ1/3, r = ϵ/10.

5.2. Asymmetric matrix factorization
We also test the algorithm for the problem of asymmetric matrix
factorization. We randomly generate matrix M∗ = U∗(V∗)T with
dimension n = 200,m = 20, r = 10 and initialize GD, perturbed
gradient descent (PGD) and PA-PP around saddle point 0. The
step-sizes of the GD and PGD algorithms are denoted as η, which
is equivalent to 1/ν of PA-PP 1. All perturbation related parameters
of PA-PP and PGD, e.g., gth, tth, r, are the same. Figure 2 shows
the superiority of PA-PP in the asymmetric matrix factorization
problem. When the step-size is large, GD and PGD cannot decrease
the objective value monotonically or sufficiently but PA-PP can,
since the regularizer (or step-size) of PA-PP depends on Lmax rather
than L. PA-PP and PGD converge faster since the negative curvature
can be captured by adding the random noise. Also, it can be observed
that PA-PP converges to the global optimal solution of this problem.

6. CONCLUSION

In this paper, we studied the geometric structure of the asymmetric
matrix factorization problems, where a modified new loss function
is proposed such that the global Lipschitz continuity of the objective
function can be satisfied without loss of optimality. PA-PP is applied
to solve this nonconvex problem, where the convergence rate of
the algorithm is also established. Numerical results show that the
proposed algorithm is able to escape from saddle much faster than
the existing methods.
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