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ABSTRACT

We propose a complex-valued deep neural network (cDNN)
for speech enhancement and source separation. While exist-
ing end-to-end systems use complex-valued gradients to pass
the training error to a real-valued DNN used for gain mask es-
timation, we use the full potential of complex-valued LSTMs,
MLPs and activation functions to estimate complex-valued
beamforming weights directly from complex-valued micro-
phone array data. By doing so, our cDNN is able to locate
and track different moving sources by exploiting the phase
information in the data. In our experiments, we use a typical
living room environment, mixtures of the WallStreet Journal
corpus, and YouTube noise. We compare our cDNN against
the BeamformIt toolkit as a baseline, and a mask-based beam-
former as a state-of-the-art reference system. We observed a
significant improvement in terms of PESQ, STOI and WER.

Index Terms— beamforming, complex-valued deep neu-
ral networks, Wirtinger Calculus

1. INTRODUCTION

Recent contributions to data-driven beamforming propose
a DNN to estimate a spectral gain mask from noisy, multi-
microphone speech signals. This mask is used to obtain the
power spectral density (PSD) matrices of the desired and in-
terfering sound sources. With those PSD estimates, statistical
beamformers such as the Minimum Variance Distortionless
Response (MVDR) beamformer [1] or the Generalized Eigen-
value (GEV) beamformer [2] are used to estimate the desired
signal. DNN-based gain mask estimators have been proposed
in [3, 4, 5]. As those approaches use magnitude spectrograms
as features, they do not exploit the spatial information con-
tained in the phase of the data. In [6, 7], we circumvent this
limitation by using the eigenvectors of the short-time PSD
matrix of the noisy speech as features. This allows for a
significantly smaller DNN to estimate the gain mask, with
comparable performance in both ASR results and perceptual
speech quality [7]. However, mask-based beamforming re-
quires an entire block of audio data at a time. During this
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period, the signal statistics are assumed to be constant. This
limits the capability to track moving sound sources. An at-
tempt towards online processing has been proposed in [8],
where the PSD matrices are recursively estimated.

With recent trends towards end-to-end ASR systems, the
DNN-based mask estimator, the beamformer and the acoustic
front-end of the ASR system are combined into a fully inter-
connected model. This allows to back-propagate the train-
ing error from the acoustic modelling cost function through
the beamformer and the DNN-based mask estimator [9, 10,
11, 12]. As beamforming involves non-holomorphic func-
tions (i.e. conjugation or absolute value), their gradients do
not exist. A widely adopted solution for this problem is to
split complex-valued functions into their real and imaginary
parts, and treat them like real-valued functions. However, this
results in losing important properties like complex rotation
or symmetry. Using Wirtinger Calculus, it is possible to de-
rive complex-valued gradients from non-holomorphic func-
tions with respect to a real-valued variable [13, 14, 15].

While end-to-end systems make use of the complex-
valued gradient of statistical beamformers, they still use a
real-valued DNN to estimate the gain mask. We aim to
explore the full potential of complex-valued gradients and
propose a fully complex DNN (cDNN) beamformer, with
complex LSTM and MLP layers, as well as complex-valued
activation functions. By doing so, we do not need to rely
on a gain mask, as the cDNN is able to predict complex-
valued beamforming weights directly from complex-valued
microphone signals. Unlike a statistical beamformer, such a
model estimates a set of optimal beamforming weights for
each time-frequency bin. This leverages the source tracking
and separation performance. To demonstrate the capabilities
of our cDNN, we perform simulations involving moving and
static sound sources in a typical living room setup, using
mixtures of the WallStreet Journal corpus (WSJ) [16] and
YouTube noise [17]. We compare the performance of the
cDNN against a baseline using BeamformIt [18] and a refer-
ence system using a mask-based beamformer [6] with online
tracking [8]. We further report performance metrics, i.e.
∆SNR, PESQ [19], STOI [20], as well as WER scores. Com-
pared to the mask-based beamformer, the proposed system
reaches an average relative improvement of 58.47% WER.
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2. COMPLEX-VALUED MULTI LAYER
PERCEPTRONS

A complex-valued MLP (cMLP) is defined analogously to its
real-valued counterpart. i.e.

h(t) = g(Whz(t) + bh), (1)

where z(t) denotes the input, and Wh and bh are the inter-
nal weights and biases, respectively. All variables are de-
fined over C. Based on recent contributions on complex-
valued neural networks [21, 22, 23], we propose the non-
linear complex-valued activation function g(·) as natural ex-
tension of a real-valued tanh unit, i.e.

g(z) = tanh(|z|)� z

|z|
, (2)

where � denotes element-wise multiplication. The function
g(z) is symmetric, with a magnitude bounded by 1.0. The
phase of z is not modified. For comparison, we demon-
strate the behavior of a tanh activation function with non-
complex gradients (i.e. the real and imaginary parts are
stacked and treated as individual values). It is given as
g2(z) = tanh(Re{z}) + i tanh(Im{z}). Figure 1 shows the
magnitude and phase response of g(z) in panel (a) and (b),
and the magnitude and phase response of g2(z) in panel (c)
and (d), respectively. It can be seen that g2(z) is not bounded
to 1.0. It also modifies the phase to a constant value per
quadrant of the complex plane.

Fig. 1: Magnitude and phase of g(z) and g2(z).

3. COMPLEX-VALUED LONG SHORT TERM
MEMORY NETWORKS

In complex-valued LSTMs (cLSTM) the input i(t), forget f (t)

and output o(t) gate are calculated as follows:

i(t) = σ
(

Re
{

Wziz
(t) + Whih

(t−1) + bi

})
, (3a)

f (t) = σ
(

Re
{

Wzfz(t) + Whfh(t−1) + bf

})
, (3b)

o(t) = σ
(

Re
{

Wzoz
(t) + Whoh

(t−1) + bo

})
. (3c)

Similar to real-valued LSTMs [24], the memory cell c(t) is
updated according to

c̃(t) = g(Wzcz
(t) + Whch

(t−1) + bc), and (4a)

c(t) = f (t) � c(t−1) + i(t) � c̃(t). (4b)

The hidden state is determined as

h(t) = o(t) � g(c(t)). (5)

Figure 2 shows the network graph of the resulting cLSTM.
Again, all variables are defined over C. Note that g2(z) can-
not be used in Eq. (5), as its magnitude is greater than one.
This would cause the gradient of h(t) to grow exponentially
when using back-propagation through time. The activations
σ(·) for the gating variables in Eq. (3a) - (3c) are real-valued
sigmoid functions, to ensure that the gating mechanism is not
altering the phase information of the input signal.
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Fig. 2: Complex LSTM unit with internal connections.

We use Wirtinger Calculus [13, 25, 15] to obtain complex-
valued gradients for each component. It allows us to it-
eratively apply the chain-rule to complex derivatives, i.e.
complex-valued back-propagation. It can also be applied
to stochastic gradient descent optimization algorithms like
ADAM [26]. For further details on complex-valued back-
propagation we refer the interested reader to [11].

2903



4. DEEP COMPLEX-VALUED NEURAL
BEAMFORMING

The cDNN uses the complex-valued microphone samples
Z(k, t,m) as features, with k = 1, . . . ,K frequency bins and
m = 1, . . . ,M microphones. To speed up the learning pro-
cess, the features are decorrelated using Principal Component
Analysis (PCA) whitening. For each time frame t, the cDNN
processes a matrix of M × K features Z(t), and predicts
a M × K matrix of complex-valued beamforming weights
W (t). The cDNN composed of three cLSTM layers and
three cMLP layers with 2MK neurons between each hidden
layer. The beamforming step is a filter-and-sum operation,
i.e. Y (k, t) = W (k, t)HZ(k, t). Figure 3 provides a system
overview.
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Fig. 3: System overview.

The signal arriving at the microphones is composed of an ad-
ditive mixture of N sound sources, i.e.

Z(k, t) =

N∑
n=1

Sn(k, t), (6)

where Sn(k, t) represents the nth sound source at frequency
bin k and time frame t. Each sound source is composed of
a monaural recording Xn(k, t) convolved with an Acoustic
Transfer Function (ATF) denoted by An(k, t), i.e.

Sn(k, t) = An(k, t)Xn(k, t). (7)

The ATFs model the acoustic path from a sound source to
the microphones, including all reverberations and reflections
caused by the room acoustics [27]. To simulate the ATFs for
point sources, we use the Image Source Method (ISM) [28].
The living room is modeled as shoebox with a reflection coef-
ficient of β = 0.85 for each wall, and a reflection order of 10.
This results in a reverberation time of approximately 250ms.
For static sources, software libraries such as [29] are read-
ily available. For dynamic sources, we generate a new set of
ATFs every 32ms. We also generate an isotropic background
noise using

Sn(k, t) = U(k, t)Xn(k, t), (8)

with U(k, t) = E(k)Λ(k)0.5 eiϕ(k,t). The matrices Λ(k)
and E(k) are the eigenvalues and eigenvectors of the spatial
coherence matrix Γ(k) for a spherical sound field [30]. The
M × 1 vector ϕ(k, t) denotes a uniformly distributed phase

between −π, . . . , π. It can easily be seen that the PSD matrix
of Sn(k, t) has the properties of a spherical sound field, i.e.
E{Sn(k)SH

n (k)} = Γ(k)ΦXnXn
(k), where ΦXX(k) is the

power spectrum of the monaural recording Xn(k, t).

5. EXPERIMENTAL SETUP

To test the performance of our cDNN, we simulate a typical
living room scenario with two static speakers S1 and S2, a
TV set S3, and two moving speakers D1 and D2. The dy-
namic paths D1 and D2 change randomly within a region of
2m on each side, as indicated in Figure 4. To simulate head
movements of the static sources S1 and S2, random position
changes occur within a cube of 20cm in size. We use a circu-
lar microphone array with M = 6 microphones and a diame-
ter of 86mm, located next to the TV set. Within this environ-
ment, we define the five experiments given in Table 1.

D2D1

S2S1

4m

0m 6m

S3

Fig. 4: Shoebox model of a living room showing stationary
sound sources S1 to S3, and dynamic sound sources D1 and
D2. The microphone array is located next to the TV set.

Experiment # Desired source Interfering source(s)
1 D1 D2

2 D1 isotropic
3 S1 isotropic
4 S1 S3

5 S2 D1, S3

Table 1: Experimental setups.

For each experiment, the cDNN predicts beamform-
ing weights W (k, t) which preserve the desired source
S1(k, t), and cancel out the interfering sources S2...N (k, t) =∑N

n=2 Sn(k, t). The cost function L(k, t) of the cDNN is
designed to maximize the ∆SNR after applying the beam-
forming weights, i.e.

L(k, t) = 10log10
|WHS1|2

|WHS2...N |2
− 10log10

||S1||22
||S2...N ||22

(9)
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for each time-frequency bin1. The mean over all time steps
T and frequency bins K is then used for back-propagation.
Note that the weights W (k, t) do not represent a statistical
beamformer like the MVDR or GEV, but rather an optimal
filter-and-sum beamformer for each time-frequency bin in a
max-SNR fashion. To avoid unbounded weights, we nor-
malize each predicted beamforming vector to unit length, i.e.
|W (k, t)| !

= 1. As a consequence, speech distortions will oc-
cur. However, it is possible to control those distortions using
Blind Statistical Normalization (BSN) [2].

5.1. Training and Testing

For training, we use 12776 utterances from the si tr s set of
the WSJ0 [16] corpus for the speech sources in Eq. (7), and
27 hours of 32 different sound categories from YouTube [17]
as isotropic background noise in Eq. (8). All recordings are
sampled at 16kHz, and converted to frequency domain with
K = 513 bins and 50% overlapping blocks. The sources in
Eq. (6) are mixed with equal volume. For testing, we use 651
utterances from the si et 05 set of the WSJ0 corpus mixed
with another 5 hours of Youtube noise of the same 32 cate-
gories. For each of the five experiments in Table 1, a separate
cDNN and mask-based beamformer is trained.

5.2. Results

We use the BeamformIt toolkit as baseline, and the mask-
based beamformer in [6] with online tracking from [8] as ref-
erence system. For each method and each experiment, we
report the ∆SNR from Eq. (9), the Perceptual Evaluation
of Speech Quality score (PESQ) [19], the Short-Time Objec-
tive Intelligibility measure (STOI), and the WER obtained by
the Google Speech-to-Text API [31]. In particular, the WER
was computed using the clean WSJ0 test set as reference,
for which the Google Speech-to-Text API reports a WER of
6.1%. From Table 2 it can be seen that BeamformIt performs
poorly for experiments with more than one source, i.e. ex-
periments 1, 4 and 5. This is to be expected, as BeamformIt
relies on blind DOA estimation to localize a single source.
The mask-based beamformer with online tracking shows bet-
ter performance for those experiments, which has also been
observed in [8]. However, our cDNN outperforms this ap-
proach significantly, as we are able to estimate the optimal
beamformer weights for each time-frequency bin in a max-
SNR sense. Figure 5 shows an utterance from the test set us-
ing the 1st experiment, where two dynamic sound sources D1

and D2 are constantly moving around the living room. Panel
(a) shows the mixture Z(k, t, 1) for the first microphone, and
panel (b) shows the estimate Y (k, t). It can be seen that the
cDNN predicts beamforming weights according to the occur-
rence of the sound sources, i.e. source signal D1 is preserved,
and D2 is canceled.

1For enhanced readability, the indices k, t have been omitted in Eq. (9).

Method Experiment # ∆SNR PESQ STOI WER
1 - 1.325 0.699 76.7%
2 - 1.222 0.774 17.7%

BeamformIt 3 - 1.222 0.764 17.9%
4 - 1.179 0.632 43.2%
5 - 1.186 0.588 88.3%
1 4.445 1.514 0.834 46.1%
2 4.286 1.576 0.837 32.8%

mask-based BF + 3 4.516 1.751 0.866 18.5%
online tracking 4 8.690 1.439 0.811 45.6%

5 7.011 1.402 0.792 58.3%
1 6.156 1.688 0.825 21.5%
2 8.736 2.263 0.882 9.0%

cDNN 3 9.558 2.551 0.902 6.1%
4 10.306 1.652 0.792 13.4%
5 9.212 1.441 0.758 33.7%

Table 2: Results

Fig. 5: (a) mixture of two dynamic sound sources D1 and D2.
(b) separated source D1 predicted by the cDNN.

6. CONCLUSIONS AND FUTURE WORK

We presented a complex-valued deep neural network (cDNN)
to estimate complex-valued beamforming weights directly
from complex-valued microphone data. Unlike existing ap-
proaches, our cDNN uses fully complex-valued LSTM and
MLP layers, as well as complex-valued activation functions.
Comparisons against BeamformIt and a state-of-the art mask-
based beamforming system showed a significant improve-
ment in terms of ∆SNR, PESQ, STOI and WER. Future
work includes experiments on real multi-channel recordings,
and the inclusion of our model in an end-to-end system.
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