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ABSTRACT

This work addresses a multi-agent cooperative navigation
problem that multiple agents work together in an unknown en-
vironment in order to reach different targets without collision
and minimize the maximum navigation time they spend. Typ-
ical reinforcement learning-based solutions directly model
the cooperative navigation policy as a steering policy. How-
ever, when each agent does not know which target to head
for, this method could prolong convergence time and reduce
overall performance. To this end, we model the navigation
policy as a combination of a dynamic target selection policy
and a collision avoidance policy. Since these two policies are
coupled, an interlaced deep reinforcement learning method
is proposed to simultaneously learn them. Additionally, a
reward function is directly derived from the optimization ob-
jective function instead of using a heuristic design method.
Extensive experiments demonstrate that the proposed method
can converge in a fast way and generate a more efficient
navigation policy compared with the state-of-the-art.

Index Terms— Cooperative navigation, deep reinforce-
ment learning, multi-agent control.

1. INTRODUCTION

The multi-agent cooperative navigation problem (MCNP) is
a key issue in the field of cooperative multi-agent control,
which can be applied to a wealth of practical applications such
as autonomous warehouse and logistics, coordinating rescue,
coordinating exploration and detection, etc. Given a certain
number of targets located in a workspace, the goal of the
MCNP is to ensure that agents can arrive at all targets with
the minimum time consumption and without collision [1–9].

Many studies have been devoted to MCNPs. They dif-
fer in problem models and solutions. In terms of problem
models, some studies require each agent to navigate to a tar-
get that is pre-allocated to it [1–6]. Several studies enable
agents to select targets dynamically during navigation but in
non-obstacle environments [7]. In terms of solutions, previ-
ous methods can be divided into non-learning methods and
learning methods. Non-learning methods generally involve
tunable parameters related to the scenario model [2, 9] or re-
sort to simultaneous localization and mapping (SLAM) [10]

to generate global maps for target allocation and path plan-
ning, but it always needs a centralized global planner [1].

A promising tendency for solving MCNPs is deep rein-
forcement learning (DRL), which combines deep learning
with traditional reinforcement learning (RL) to learn a policy
that maximizes the expected long-term rewards by interacting
with the environment. Applied to MCNPs, two issues need to
be delicately considered: reward function design and policy
model. The reward function should meet the demands of ac-
tion coordination and collision avoidance. The policy model
determines the time complexity of the learning process. Most
methods adopt heuristic reward function designs, such as
setting a global reward function to collectively reward all
agents [7, 8] or a local reward function based on each agent’s
situation [3–5]. In terms of policy models, previous meth-
ods directly model the cooperative navigation policy of each
agent as a steering policy similar to that in the single-agent
single-target navigation. Generally, it lacks effectiveness for
solving the MCNPs with unallocated targets in this way.

In this work, we tackle the MCNP in an unknown and
complex environment with unallocated targets. We model the
navigation policy as a combination of a dynamic target selec-
tion policy and a collision avoidance policy. Specifically, this
paper makes the following contributions.
• This paper proposes an interlaced DRL (IDRL) method to

solve the MCNP and derives a reward function from the
MCNP objective function instead of a heuristic design.

• Empirical results demonstrate that IDRL can converge in
a fast way and generate a more efficient navigation policy
compared with the state-of-the-art.

2. PROBLEM FORMULATION

This paper considers the MCNP in unknown environments
with obstacles and unallocated targets as shown in Fig. 1. N
self-controlled agents need to arrive at N unallocated targets
without collision using as little time as possible. At time t,
agent Ai acts according to its observations oti = [otip,o

t
id].

Specifically, otip = [oti,tar1 , ...,o
t
i,tarn

, ...,oti,tarN ,o
t
i,ag1

, ...,
oti,agj 6=i , ...,o

t
i,agN

], where oti,tarn and oti,agj are the relative
position coordinates of targets and other agents from the per-
spective ofAi, respectively. otid = [dti,1, d

t
i,2, ..., d

t
i,k, ..., d

t
i,K ]

is the ranging result of K detection beams between −90 and
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Fig. 1: Illustration of the MCNP. Blue arrows represent some detection
beams. The arc dashed line represents the effective detection boundary.

90 degrees [11, 12]. The effective detection range is de. For
simplicity, we assume that agents move at a fixed speed.
Thus, each agent’s navigation policy can be formulated as a
mapping πi : oti → cti, where cti denotes Ai’s steering angle.

The cooperative navigation terminates when each agent
reaches a different target or any agent collides or the time
reaches a sufficiently large limit. Uniformly, the cooperative
navigation time can be represented as agents’ maximum nav-
igation time. Thus, the MCNP can be formulated as:

min
π1:N

E
[
Tmax

∣∣o0
1:N , π1:N

]
s.t. I(Tmax) = 1

‖oTmaxi,agj
‖2 ≥ dr ∀i, j 6= i

dTmaxi,k ≥ dr ∀i, k .

(1)

Tmax = max
i∈[1,N ]

Ti, where Ti is Ai’s navigation time. o0
1:N =

(o0
1, ...,o

0
N ) represents observations at the beginning. π1:N =

(π1, ..., πN ). I(t) is an indicator function. I(t) = 1 indicates
that at time t each agent arrives at a different target. dr is
the distance threshold for judging the collision. The physical
meaning of the constraints is that to accomplish a cooperative
navigation task, each agent should arrive at a different target
and keep a safe distance from other agents and obstacles.

For solving such a MCNP, we propose a distributed con-
trol method. From the perspective of Ai, since it can get the
arrival status of all agents and its distances from other agents
and obstacles based on otip and otid, its optimization objective
function is:

min
πi

E
[
Tmax

∣∣o0
i , πi

]
s.t. I(Tmax) = 1

‖oTmaxi,agj
‖2 ≥ dr ∀j 6= i

dTmaxi,k ≥ dr ∀k .

(2)

This problem can be verified to be NP-complete. Since it is
also a control problem, we design a DRL-based solution.

3. METHOD

3.1. Deep Reinforcement Learning Framework

We model the MCNP as a Markov decision process (MDP).
It can be formulated as a tuple (S,A, P,R, γ). S is the state
space, A is the action space, P is the state transition probabil-
ity, R is the reward function defined as: S ×A→ r ∈ R, and
γ is the discount factor. RL can learn a policy to maximize the

expectation of long-term discount rewardsE[
∑
t γ

trt], where
rt is the reward at time t. The state-value function Vπ(s) and
the action-value function Qπ(s, a) are defined as:

Vπ(s) = E

[
T∑
τ=0

γτ rt+τ |st = s, π

]
, (3)

Qπ(s, a) = E

[
T∑
τ=0

γτ rt+τ |st = s, at = a, π

]
, (4)

where T is the time horizon, st is the state at time t and at
is the action at time t. The optimal policies share the same
optimal state-value function V∗(s) = maxπ Vπ(s) and action-
value function Q∗(s, a) = maxπ Qπ(s, a) [13].

DRL combines deep learning with RL. Experience replay
[14] and target network [15] are used to stabilize the learning
process. Two common DRL algorithms are Deep Q Network
(DQN) [16] and deep deterministic policy gradient (DDPG)
[17]. DQN can solve the problem with discrete action space.
It learns an action-value function by minimizing the loss:

L(θπ) = E
[
(yt −Q(st, at|θπ))2

]
. (5)

yt is the target value yt = rt+γmaxaQ
′(st+1, a|θπ

′
), where

Q′ is the target network. DQN uses the ε-greedy policy [16]
during training and finally generates a greedy policy a =
maxaQ(s, a). DDPG can solve the problem with continuous
action space. It learns a deterministic policy µ(s|θµ) and a
Q-function Q(s, a|θQ) simultaneously to maximize its objec-
tive function J(θµ) = Es∼dµ [

∑
t γ

trt], where dµ is the state
distribution. The Q-function is learned to minimize (5) with
the target value set as yt = rt+γQ

′(st+1, µ
′(st+1|θµ

′
)|θQ′),

where Q′ and µ′ are target networks. The policy is learned by
taking steps in the direction:
∇θµJ(θµ) = Es∼dµ

[
∇θµµ(s|θµ)∇aQ(s, a|θQ)|a=µ(s|θµ)

]
. (6)

3.2. Reward function derivation

In this subsection, we generate a reward function from the
objective function in (2). Specifically, we use a unit pulse
function δ(·) and two step functions u(·) to mark whether the
constraints in (2) are satisfied. For example, if δ(I(t)− 1) =
1, the first constraint is satisfied. Thus, we convert (2) as:

max
πi

E

Tmax∑
t=1

−1 + C1δ (I(t)− 1)− C2

N∑
j=1,j 6=i

u
(
dr − ‖oti,agj ‖2

)
− C3

K∑
k=1

u
(
dr − dti,k

))∣∣∣∣∣o0
i , πi

]
,

(7)

where C1, C2, C3 > 0. For ensuring equivalency, C1 should
be great enough to avoid the circumstance that the cooperative
navigation process ends with a collision. Compared to the
state-value function (3) in DRL, in the condition that γ = 1,
Ai’s reward rti at time t can be presented as:

rti = −1 + C1δ (I(t)− 1)− C2

N∑
j=1,j 6=i

u(dr − ‖oti,agj ‖2)− C3

K∑
k=1

u(dr − dti,k),

(8)
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which can be expressed as:

rti =


− 1− C2, if ∃j 6= i, ‖oti,agj ‖ ≤ dr

− 1− C3, else if ∃k, dti,k ≤ dr
− 1 + C1, else if I(t) = 1

− 1, otherwise

, (9)

3.3. Interlaced DRL for the MCNP

Since agents in this MCNP are homogeneous, they can share a
common policy and reward function [3–5,8,18]. Thus, we de-
velop a common navigation policy mapping the observations
of each agent to actions. We model the navigation policy as a
combination of a dynamic target selection policy and a colli-
sion avoidance policy. After selecting a target, the MCNP ap-
proximates to a single-agent navigation problem. Moreover,
the target selection problem is relatively easy to be solved.
Thus, compared with directly modeling the navigation policy
as a steering policy, our method can reduce the time complex-
ity of the learning process. Because these two policies are
coupled, they cannot be learned separately. We propose an
interlaced DRL (IDRL) method to simultaneously learn them.

The dynamic target selection policy maps otip to the index
of a target atts ∈ [1, N ]. The collision avoidance policy maps
oti = [otip,o

t
id] (otid depends on atts) to a steering action atca

in a continuous space. Generally, the dynamic target selection
policy and the collision avoidance policy work sequentially at
each time step. For each agent, the target selection policy
works first. Then the agent rotates the center of its field of
view to the selected target and obtains the ranging results otid
(we set the first element dti,1 as the ranging result in the target
direction). If no obstacles are observed in the selected target
direction, i.e. dti,1 > de, the agent moves a step towards the
selected target. Otherwise, the collision avoidance policy will
be activated to output a steering angle relative to the target
direction, and the agent moves a step in this direction. Thus,
when no obstacles are observed in the selected target direc-
tion, the navigation policy is simplified to the target selection
policy. Otherwise the navigation policy is a combination of
the target selection policy and the collision avoidance policy.

During the training phase, considering that the target se-
lection action space is discrete, we adopt DQN to generate
atst using the ε-greedy policy based on the value of the Q-
function Qts(otip, a

t
ts). The collision avoidance action space

is continuous, thus we adopt DDPG to learn the policy µ(oti)
and the Q-function Qca(oti, a

t
ca). Since the target selection

policy and the collision avoidance policy are coupled to work
and influence each other, we design a unified learning struc-
ture to learn Qts(otip, a

t
ts) and Qca(oti, a

t
ca). Specifically, ac-

cording to their sequential relationship, the target value of
Qts(otip, a

t
ts) and Qca(oti, a

t
ca) are determined by whether

obstacles are observed at time t + 1. As for the target se-
lection policy, if obstacles are observed at the next time step,
its performance is determined by the collision avoidance pol-
icy. As for the collision avoidance policy, if no obstacles are

Algorithm 1 Interlaced DRL for the MCNP of N agents
Initialize networks Qts(otip, a

t
ts|θts), Qca(oti, atca|θca) and µ(oti|θµ)

with random weights θts, θca, θµ

Initialize the target networksQts
′
,Qca

′
and µ′ with weights θts

′ ← θts,
θca
′ ← θca, θµ

′ ← θµ

Initialize replay buffer D1, D2

for episode= 1, Z do:
Initialize a random processN for action exploration
Receive initial observation state o1

ip for each agent
for t = 1, T do:

for agent i = 1, N do:
With probability ε select a random target ati,ts, otherwise select
ati,ts = maxaQts(otip, a|θts)
Compute the direction angle ρtts of target ati,ts
Rotate ρtts, detect and receive otid
if dti,1 > de:

Move a step toward target ati,ts
esle:

Compute steering angle ati,ca = µ(oti|θµ) +N ti
Rotate ati,ca and move a step

end for
for agent i = 1, N do:

Receive rti , o
t+1
ip

Select a fictitious target at+1
i,ts = max

a
Qts
′
(ot+1
ip , a|θts′ )

Receive ot+1
id as above (line 13 to 14)

Store transition (otip, a
t
i,ts, r

t
i ,o

t+1
i ) in D1

if dti,1 ≤ de:
Store transition (oti, a

t
i,ca, r

t
i ,o

t+1
i ) in D2

end for
Sample a random minibatch of M transitions from D1

Sample a random minibatch of M transitions from D2

Set yji according to (10) and update θts, θca by minimizing:
L(θts) = 1

M

∑
j (y

j
i −Q

ts)2, L(θca) = 1
M

∑
j (y

j
i −Q

ca)2

Update θµ according to Equation (6) using sampled gradient:
∇θµJ ≈ 1

M

∑
j ∇aQca(o, a|θca)|o=o

j
i ,a=µ(o

j
i )
∇θµµ(o|θµ)|o=o

j
i

Update the target networks (η is the soft target update rate):
θts
′ ← ηθts + (1− η)θts′

θca
′ ← ηθca + (1− η)θca′

θµ
′ ← ηθµ + (1− η)θµ′

end for
end for

observed at the next step, its performance is determined by
the target selection policy. Consequently, the target value for
learning Qts(otip, a

t
ts) and Qca(oti, a

t
ca) is defined as:

yti =


rti + γmax

at+1
ts

Qts(ot+1
ip , at+1

ts ), if dt+1
i,1 > de

rti + γQca
(
ot+1
i , µ(ot+1

i )
)

, otherwise
. (10)

The detailed IDRL is provided in Algorithm 1.

4. EXPERIMENTS

We evaluate the performance of our method in a 30 × 30m2

plane randomly distributed with ten round or square blocks.
The size (diameter or side length) of these blocks obeys to
uniform distribution U(1, 6)m. Two target locations and two
agent departure locations are randomly generated. The num-
ber of detection beams K is set to be 7, and the effective
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detection range de is 4m. Two agents have the same speed
v = 0.5m/step. Qts is constructed as a three-layer network
with 300,200,200 units per layer and Qca is constructed as a
three-layer network with 100 units per layer. µ is constructed
as a network containing two hidden layers with 100 units per
layer and a output layer activated by a tanh function multi-
plied by π/2. Additionally: γ = 1, C1 = 50, C2 = C3 = 2
and the maximum episode length is 70. We first pre-train a
target selection policy in obstacle-free environments. After
that, we newly add obstacles and simultaneously train the tar-
get selection policy and the collision avoidance policy.

Convergence curves of different methods are shown in
Fig. 2. It can be observed that by pre-training the target
selection policy for a short time, IDRL converges fast. It
demonstrates that the dual policy model is efficient. We com-
pare the performance of IDRL with single-agent DDPG and
MADDPG [7]. In single-agent DDPG, we randomly allocate
targets and simplify this problem as a single-agent naviga-
tion problem. It only learns a collision avoidance policy
by DDPG. As shown in Fig. 2, IDRL gains more rewards,
because IDRL simultaneously optimizes the target selection
policy and the collision avoidance policy. In MADDPG, the
agents aim to directly learn a steering policy, which outputs a
steering angle that blends the target selection action with the
collision avoidance action. Its performance is inferior to that
of IDRL and single-agent DDPG. It converges slowly and
gains the least rewards. This result illustrates that MADDPG
lacks efficiency to solve the MCNP in environments with
obstacles and unallocated targets because the coordination
among agents is hard to be learned by directly modeling the
navigation policy as a steering policy.

Fig. 2: Convergence curves of single-agent DDPG, MADDPG and IDRL.

To evaluate the policy learned by IDRL, we select two
typical scenario samples and depict the navigation trajectories
as shown in Fig. 3. The results demonstrate that the agents
can avoid obstacles and reach different targets. In Fig. 3 (a),
the target selection results are displayed in different colors.
They show that agents can select targets dynamically during
the navigation process. Specifically, agent 2 first selects target
1 but then turns to target 2 because it observes obstacles and
also updates the relative position information of agent 1. Ad-
ditionally, we observe that these two agents can cooperate to
select different targets as the navigation procedure proceeds.
In Fig. 3 (b), we compare the policy performance of IDRL
with that of MADDPG. The result shows that IDRL generates

less tortuous trajectories than MADDPG. The reason is that in
IDRL when the agent observes no obstacles in its selected tar-
get direction it only needs to go straight to the target. Also in
Fig. 3 (b), the difference in navigation time between the two
methods can be measured by agents’ trajectory lengths. The
result shows that the maximum trajectory length of the two
agents in IDRL is shorter than that in MADDPG, which in-
dicates that the policy learned by IDRL can take less time to
complete a cooperative navigation than MADDPG.

(a) (b)

Fig. 3: Navigation trajectories generated by IDRL (Ours) and MADDPG.

To quantitatively measure the performance of different
methods, we select two typical metrics: mean arrival rate
(“arrival” means that each agent arrives at a different target
without collision) and mean maximum navigation time. 1000
scenarios are randomly generated to get the statistical results
of the metrics. The results in Table 1 demonstrate that IDRL
achieves more than 16% improvement in mean arrival rate
and reduces at least 15% mean maximum navigation time
compared with single-agent DDPG and MADDPG.

Table 1: Mean arrival rate and mean maximum navigation time.

Obstacle size distribution Learning Mean Mean maximum
(diameter or side length) method arrival rate navigation time (s)

U(1m, 2m)
IDRL 0.98 41.34
DDPG 0.82 48.62

MADDPG 0.56 50.72

U(3m, 4m)
IDRL 0.95 41.86
DDPG 0.76 49.05

MADDPG 0.49 50.99

5. CONCLUSION

We present an interlaced DRL (IDRL) method which can si-
multaneously learn a dynamic target selection policy and a
collision avoidance policy to solve the MCNP. Additionally,
the reward function is directly derived instead of using heuris-
tic design methods. Experimental results demonstrate that
IDRL converges faster than traditional DRL methods. The
mean arrival rate is increased by more than 16% and the mean
maximum navigation time is reduced by more than 15% com-
pared with the typical single-agent DDPG and MADDPG.
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