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ABSTRACT

Recently, surgical activity recognition has been receiving sig-
nificant attention from the medical imaging community. Ex-
isting state-of-the-art approaches employ recurrent neural net-
works such as long-short term memory networks (LSTMs).
However, our experiments show that these networks are not
effective in capturing the relationship of features with differ-
ent temporal scales. Such limitation will lead to sub-optimal
recognition performance of surgical activities containing
complex motions at multiple time scales. To overcome this
shortcoming, our paper proposes a multi-scale recurrent neu-
ral network (MS-RNN) that combines the strength of both
wavelet scattering operations and LSTM. We validate the
effectiveness of the proposed network using both real and
synthetic datasets. Our experimental results show that MS-
RNN outperforms state-of-the-art methods in surgical activity
recognition by a significant margin. On a synthetic dataset,
the proposed network achieves more than 90% classification
accuracy while LSTM’s accuracy is around chance level. Ex-
periments on real surgical activity dataset shows a significant
improvement of recognition accuracy over the current state
of the art (90.2% versus 83.3%).

Index Terms— Multi-Scale Recurrent Network, Surgical
Activity, Scattering Convolution Network

1. INTRODUCTION

Automated surgical-activity recognition is valuable for vari-
ous high-level objectives such as assessment of surgical skills.
Earlier pioneering work [1] uses the Markov structure of a
surgical task as an indicator of skill. Later work used hid-
den Markov models (HMMs) learned from kinematic data
(hand-movement) [2, 3]. Recent work [4, 5, 6] introduced
conditional random fields and other variants as an alternative
discriminative to HMMs. These approaches all model each
gesture using latent variables. They differ only in how obser-
vations are modeled within each gesture.

Recent research [7, 8, 9, 10] has showed that deep
networks and reinforcement learning significantly outper-
formed traditional approaches, which use gestures analysis,
on surgical-activity recognition. For example, [9] proposes
a temporal convolution network to capture features across
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multiple time scales. This architecture, however, requires the
input data to have a fixed length. [7] employs an LSTM and
its bidirectional variant to achieve a high recognition accuracy
and edit distance on JIGSAWS dataset [11]. However, these
recurrent networks do not have an explicit mechanism to
capture information across different temporal scales. While
gated recurrent networks theoretically can capture multi-
scale temporal information, our experiments on a synthetic
data demonstrate that this capability is limited.

Our paper makes the following contributions: a) We de-
sign experiments with synthetic data to show the limitation of
existing recurrent neural networks; b) To overcome the limi-
tation, we propose a novel recurrent network with an explicit
mechanism of encoding multi-scale temporal features; c) We
validate the effectiveness of the proposed network on both
real and synthetic datasets.

2. BACKGROUND ON INVARIANT SCATTERING
CONVOLUTION NETWORKS

A major challenge in image classification comes from the
high variability caused by rigid transformations such as trans-
lations, rotations, or scaling. The key idea of scattering con-
volution networks (ScatNet) is to create translation invariant
representation of the input signals using a cascade of convo-
lutions with wavelets. This effectively results in descriptors
with multi-scale and multi-direction co-occurence informa-
tion. Recent work demonstrated that these descriptors are
highly effective for classification tasks [12, 13, 14, 15]. In
what follows, we provide a brief review of ScatNet to facili-
tate the discussion.

Wavelets: A wavelet is a waveform localized both in time and
frequency, as opposed to the Fourier sinusoidal waves which
are only localized in frequency. A wavelet transform com-
putes convolutions of input signals with wavelets such as Ga-
bor filters [16]. We will use 2D wavelets as an example for
our discussion as in [13]. Let R u be the rotation of u & R?
by an angle v. Directional wavelets are obtained by rotating a
single band-pass filter ) by different angles ~y, and scaling by
27, which we can write as follows:

Vi (u) = 2_2j¢(2_jR7“) (D
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Fig. 1: Scattering convolution networks.

Scattering Convolution Networks: In classification, it is
often beneficial to have translation-invariant representation of
input signals. Unfortunately, wavelet transforms are not trans-
lation invariant. ScatNets overcome this problem by using a
cascade of wavelet transforms, followed by non-linear modu-
lus and averaging operators. Fig. 1 provides an illustration of
ScatNets. Concretely, the scattering descriptor is computed
by convolving the input signal x with a family of wavelets at
different scales and orientations: {z % 1;(u)}. The output
of this operations are 2D response maps containing both real
and imaginary parts. ScatNets perform modulus operations
on these maps to obtain the magnitudes. This helps reduce the
variation due to their complex phases. It then performs an av-
erage operation over all pixel locations to obtain a translation-
invariant representation. That are {|z * 1, ,(u)| x ¢}, where
¢ denotes an averaging operator. Although the resulting coef-
ficients are translation-invariant, it does not contain sufficient
information for classification purposes as high-frequency fea-
tures are lost after the averaging operations. To restore the
high-frequency information, ScatNets repeatedly convolve
the output of the wavelet transforms with other family of
wavelets: | 1;, ~, (u)| *x%j, 4, (u). After each convolution,
ScatNets apply modulus and averaging operations to obtain
an additional set of translation-invariant coefficients capturing
higher-frequency features: | |z x 1}, , (w)] * 1}, 4, (1) | * .
These coefficients are called scattering coefficients because
they result from interactions of = with two or more wavelets.
ScatNets compute higher-order coefficients by further iter-
ating on convolutions and modulus operations as shown in
Fig. 1. A ScatNet is similar to a multi-layer feed-forward
network, except that each layer uses a per-determined family
of wavelets to transform the input data.

The concatenation of all scattering coefficients create a
rich translation-invariant representation. Moreover, it is also
stable to deformations, making it suitable for classification
[13]. In other words, ScatNets’ coefficients change smoothly
for small deformations of the input x. Prior work showed that
ScatNets achieve competitive results on hand-written digits
classification using only a small number of training samples
[13, 12].

3. MULTI-SCALE RECURRENT NETWORK

Motivation: Kinematic data recorded from surgical robots
contain motions at different temporal scales. For example,

surgical gripper’s position might vary more often than its ro-
tation matrix. Being able to extract co-occurence information
across temporal scales, as in ScatNet, is important for under-
standing the on-going surgical activity embedded within kine-
matic data. Unfortunately, current state-of-the-art recurrent
networks such as long-short term memory networks (LSTMs)
and gated recurrent units (GRUs) [17] have limited capabil-
ity in capturing information across multiple temporal scales.
To corroborate our claim, we conduct a classification experi-
ment on a set of 1D signals. Each signal contains two struc-
tures, one with a short duration and one with a longer du-
ration. More detail on signal generation is provided in the
experimental section. The networks have to classify whether
the short-duration structure is inside or outside of the long-
duration one. To achieve high classification accuracy, net-
works must capture the relationship of features across multi-
ple temporal scales. Our results show that existing recurrent
networks do not perform well on this simple task. For ex-
ample, both LSTM’s and GRU’s classification accuracies are
around chance level for input signals of 552 dimensions.

Multi-Scale Recurrent Network: Motivated by the observa-
tion of LSTM and GRU’s shortcomings, we propose a new
recurrent architecture, called multi-scale recurrent network
(MS-RNN). The central idea is to incorporate scattering coef-
ficients into the network’s computation to facilitate the learn-
ing of multi-scale temporal features. We use scattering coef-
ficients because they are co-occurence of multiple wavelets,
therefore naturally encode interaction of features across mul-
tiple scales. In addition, scattering coefficients are transla-
tion invariant, and have rigorous theoretical justification in
terms of stable deformation. Learning model trained on these
coefficients have been showed to generalize well with much
smaller number of training examples [12, 13]. This is a de-
sirable property as biomedical datasets, including surgical-
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Fig. 2: Illustration of multi-scale recurrent network.
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activity recognition datasets, often do not have a large number
of samples.

Fig. 2 provides an illustration of the proposed network on
1D signals. Our network uses LSTM as the basic building
block. The main difference between MS-RNN and LSTM is
in how hidden units and gates are updated at each time step.
Let X; = [®1—p, ..., ;] denotes the buffer data by concate-
nating the current input and p past inputs. Scattering coef-
ficients, denoted by s;, are computed by applying a ScatNet
on X;. Specifically, we convolve X; with multiple sets of fil-
ters {Z/Jy) } K¢ along the temporal dimension, where K/ is the
number of filters in layer ¢ of the ScatNet. We apply modulus
and averaging operations on the convolution output each layer
¢ to obtain a set of scattering coefficients. These coefficients
then serve as additional input variables to our network. The
hidden units and gates in MS-RNN is updated as follows:

iy = o(Waiws + Whihe 1 + Wise + by), 2
fe =0(Wasae + Whshe—1 + Wpse + by), 3)
o = 0(Waors + Whohi—1 + Wios; +b,), )
gt = Q(Waexs + Whehi—1 + Wiesi + be), &)

where s; = ScatNet(X;) 6)

ScatNets utilize pre-determined wavelets to compute co-
occurences of all scales and orientations, which can be highly
redundant. To increase the compactness of the extracted fea-
tures, MS-RNN jointly optimizes LSTM’s parameters and the
ScatNet’s filters {%@ } iKzél. Learned filters are more compact
since they are tuned to data, therefore reduce the number
of additional input variables in our networks and make its
training less prone to over-fitting. MS-RNN is much simpler
than recently proposed methods [18, 19, 20]. Intuitively, one
can think of MS-RNN as an augmentation of the existing
LSTMs. This is in the same vein to Neural Turing Machines
[21] which achieve the capability of learning long-term de-
pendency by augmenting LSTMs with an external memory.
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Fig. 3: An example of synthetic signals. The label is 0 as
structure-2 falls outside of structure-1.

4. EXPERIMENTS

4.1. Synthetic Data

Data Generation: We first use synthetic data containing in-
teraction of multiple temporal scales to compare the perfor-
mance of the proposed network to LSTM and GRU. Our syn-
thetic data are V-length one dimensional signals. Each signal
consists of the embedding of two structures. Structure—1 has
a longer duration and is composed of two pulses with equal
magnitudes. The interval between two pulses, denoted by d;,
has variable length with minimum length of 45 and maximum
length of 75. Structure-2 has a shorter duration, and con-
sists of multiple pulses with irregular magnitudes, which are
smaller than the magnitude of pulses in structure-1. The rest
of the signal is filled with Gaussian noise with zero mean and
unit standard deviation. We assign the label y = 1 to a signal
if the structure-2 falls between two pulses of the structure-1,
and y = 0 otherwise. Fig. 3 shows an example of generated
signals. The task is to predict the label y given a signal. Intu-
itively, to achieve high classification accuracy, a network must
understand the relationship between the two structures. This
in turns requires the extraction of multi-scale features.
Training: We generate a dataset of 20,000 samples for train-
ing and the same number of samples for testing. We use Adam
optimizer with learning rate of 0.001, and batch size of 16, to
train all the networks. The best number of hidden units for
all networks are selected by a 10-fold cross-validation. For
MS-RNN, we set the number of hidden units to be m = 30,
beyond which we did not observe any significant improve-
ment in the classification accuracy. All weights are initiated
using Xavier initialization. For computing scattering coeffi-
cients, we set the buffer signal length to p = 80. The num-
bers of layers and filters in ScatNet are respectively L = 2
and K, = 20.

Results: In addition to LSTM, we also compare with a gated
recurrent unit (GRU) [17]. GRUs have a simpler gating mech-

100 552

Sequence length 100 552 100 552

07773 0.5052 07564 04836 0.8164 0.5540

- 07846 05235 07754 05195 0.8401 0.6101
Validation

accuracy (every  0.7315  0.5095 07685  0.5297 0.9597 0.7187

800 training 0.7773  0.5058  0.7894 0.5184 0.9750 0.7974

iterations) 7903 (5168 07873 0.5180 0.9677 0.8908

07810 05143 07921 05197 09841 0.9201

eans 0.7799  0.5078 07925 0.5064 0.9848 0.9161
accuracy

Fig. 4: Comparison of LSTM, GRU, and MS-RNN clas-
sification accuracy on the synthetic signals of length 100
and 552.
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anism than LSTM and has been showed to produce compet-
itive results in various classification tasks. Fig. 4 summa-
rizes the classification accuracies of different recurrent net-
works. We can notice that MS-RNN outperforms both LSTM
and GRU by a significant margin. For example, MS-RNN
achieves 98.48% accuracy compared to 77.9% of LSTM for
100-dimensional input signals. When the signal length in-
creases to 552, LSTM’s and GRU’s performances are reduced
to chance level, while the proposed network maintains more
than 90% classification accuracy. We note that increasing the
number of hidden units within LSTM and GRU does not im-
proving their accuracies. The experiment demonstrates that
MS-RNN is highly effective in dealing with complex interac-
tion of features from different temporal scales.

4.2. Surgical-Activity Recognition

Description of Dataset: The JIGSAWS dataset consists of
videos data, robot kimenatics, and manual annotations sam-
pled at 30 Hz. These data were recorded when surgeons per-
form elementary tasks on a bench-top model in a laboratory
using the da Vinci Surgical System [22]. There are 15 surgi-
cal tasks related to suturing, knot-tying, and needle-passing.
These tasks are part of the surgical skills training curricula.
Kinematic data include positions, rotation matrices, angular
velocities, gripper’s angles master tool manipulators (i.e. op-
erated by surgeons) and patient-side manipulators.
Recognition Task: The goal of this experiment is to recog-
nize surgical activities given a sequence of robot kinematics in
JIGSAWS dataset [11]. This is the same as classifying every
frame of the sequence into one of the activities. We down-
sample the data from 30 Hz to 5 Hz as done in [7]. We use
the standardized leave-one-user-out evaluation setup: for the
i-th run, use ¢-th user data for testing, and the rest for train-
ing. We average the results over 8 runs, one for each user. We
use Levenshtein distance to measure the performance on this
dataset. Intuitively, this distance corresponds to the number
of actions required for transforming a sequence of predicted
labels into ground-truth sequence of labels. This is different
from accuracy, which is the percentage of correctly-classified
frames, without considering temporal consistency.
Hyperparameter Setting: Here we include the most relevant
details regarding hyperparameter selection and training. For
each run we train for a total of approximately 200 epochs.
We use a batch size of 5 sequences for all experiments. We
performed 10-fold cross-validation to determine the best pa-
rameter settings corresponding to the lowest edit distance. In
particular, we set the number of hidden units m = 1024, Scat-
Net’s number of layers ¢ = 2, convolution filters K, = 30,
buffer length p = 60 for all experiments. Using a modern
GPU (GTX 1080 Ti), training takes about 2 hours. At test
time, the network takes approximately 0.5 seconds to com-
pute the output for each minute of kinematic sequence (300
time steps).

Fig. 5: Images from JIGSAWS dataset.

Accuracy (%) | Edit Dist. (%)
MsM-CRF 72.6 _
SDSDL 78.7 _
SC-CRF 80.3 _
LC-SC-CRF 82.5+54 148 £94
Forward LSTM 80.5+6.2 19.8 £ 8.7
Bidir. LSTM 83.3+5.7 14.6 9.6
MS-RNN 90.2 +7.5 10.5 + 9.8

Table 1: Quantitative comparisons of MS-RNN perfor-
mances to prior work on JIGSAWS dataset. Our perfor-
mances were averaged over 10 runs and all activities.

Results: Table 1 shows gesture recognition accuracies and
the corresponding Levenshtein distance on JIGSAWS dataset.
We compare with a forward LSTM, a bidirectional LSTM,
and other state-of-the-art approaches. We include standard
deviations where possible. The dataset has a large inter-user
variation, where some users are highly challenging, regard-
less of the recognition method. Our method outperforms
other approaches by a significant margin, both in terms of
accuracy and edit distance.

5. CONCLUSIONS

This paper investigates the limitation of existing recurrent net-
works such as LSTMs and GRUs on capturing multi-scale
interaction within data. We propose a simple yet effective
multi-scale recurrent network. We demonstrate the effective-
ness of the proposed approach using both real and synthetic
data. For synthetic data, MS-RNN achieve higher than 90%
accuracy while the performance of other methods are reduced
to chance level. For surgical-activity recognition task, the
MS-RNN outperforms state-of-the-art method using by a sig-
nificant margin. In the future, we will combine kinematic and
video data to further improve the recognition performance.
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