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ABSTRACT

Road traffic forecasting systems are in scenarios where
sensor or system failure occur. In those scenarios, it is known
that missing values negatively affect estimation accuracy al-
though it is being often underestimate in current deep neural
network approaches. Our assumption is that traffic data can
be generated from a latent space. Thus, we propose an online
unsupervised data imputation method based on learning the
data distribution using a variational autoencoder (VAE). This
is used as an independent pre-processing step prior to traffic
forecasting which is then evaluated against missing data of
a real-world dataset. Compared to other methods, we show
that VAE improves post-imputation traffic forecasting perfor-
mance while allowing for data augmentation, data compres-
sion and traffic classification at the same time.

Index Terms— traffic forecasting, deep learning, missing
data, imputation method, intelligent transportation systems

1. INTRODUCTION

Traffic forecasting is an estimation problem that has been an
integral part of most Intelligent Transportation Systems (ITS)
and related research [1]. Currently, deep neural networks
(DNN) approaches have succeeded in this field mainly be-
cause of the ability to efficiently model the nonlinearities of
traffic behavior [2] and because of the amount of traffic data
available due to ITS growth. Authors of [1] summarized some
DNN approaches prior to 2014 but more recent advanced ar-
chitectures include, for example, [3] where traffic data are
treated as images while using CNN to exploit spatiotemporal
relationships or [4] and [5] where LSTM networks are used
to model the long temporal dependency of traffic. Neverthe-
less, none of these approaches mentions how missing data are
handled or how it affects system performance, although it is
known that the performance of DNN models depends directly
on the quality of the data [6]. Many real-world traffic datasets
used in literature contain missing values (MVs) for many rea-
sons such as system or sensor failure. A basic strategy is to
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discard entire rows containing MV but this comes at the price
of losing data which may be valuable. A better strategy is to
pre-process data imputing MVs, i.e., to infer them from the
known part of the data. State-of-the-art imputation methods
can be categorized [7] as either discriminative, such as mul-
tiple imputation by chained equations (MICE) [8] and matrix
completion [9], or generative methods based on DNN. Two
well-known imputation methods in traffic forecasting are k-
nearest neighbors (KNN) [10] and principal component anal-
ysis (PCA) [11]. Related to our work but not to traffic fore-
casting, [12] and [13] proposed a generative model imputation
method using generative adversarial networks (GAN). Also,
[14] proposed an overcomplete denoising autoencoder (DAE)
to be able to reconstruct data by stochastically corrupting it.

In traffic forecasting, missing data are part of the inher-
ent structure of the problem: all current real-world datasets
contain MVs. To circumvent this, in this work we propose to
learn the underlying structure that generates traffic data. We
assume that traffic is not generated randomly but from a latent
subspace. Thus, we formulate it as a generative model which
forces us to approximate the joint probability distribution via
Bayesian inference. To that aim we propose the use of vari-
ational autoencoder (VAE) [15, 16] that allows us to impute
missing traffic data in an online unsupervised fashion from
the learned data distribution. Also, we constrain the latent
space dimensionality resulting in only learning useful prop-
erties for traffic forecasting [17, 18] while allowing for data
compression. Here, we force the posterior distribution to be
continuous which then VAE is able to learn a continuous la-
tent space. This means that traffic of the same class ends up
closer together in said space which allows for unsupervised
traffic classification while at the same time to detect anoma-
lous traffic. Moreover, we can generate new traffic data as our
proposal has learned the traffic data distribution.

Next, in Sec. 2 we introduce the traffic forecasting and
missing data problem. In Sec. 3 we formulate it as a latent
variable model while providing an implementation that is able
to learn the data distribution and impute MVs. Finally, in Sec.
4 we experiment with a real-world traffic dataset. We evaluate
our proposal w.r.t the post-imputation performance of a traffic
speed forecasting system providing results against different
missing rates and compression factors.
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Fig. 1. Implemented road traffic forecasting system.

2. THE TRAFFIC FORECASTING PROBLEM

Let x ∈ Rn×d be a data sample from the traffic dataset X ,
where n is the number of past data samples and d the number
of detectors. The elements within x are values of traffic vari-
ables associated with time and space that may be viewed as
an image to account for the spatial and temporal correlation
information between traffic network points [3]. Likewise, let
y ∈ Rm be the future state of m ≤ d subset of detectors in
the time horizon of h samples.

The goal of a traffic forecasting system modeled given
y = f∗(x) is to accurate estimate y and thus the challenge
is to derive a function f that closely resembles f∗. However,
another important challenge is how to handle missing data to
not deteriorate the performance of the system. Thus, here-
after we focus on DNN traffic forecasting affected by missing
data. Fig. 1 shows the scenario under consideration divided
into two parts: an imputation layer (IL) that pre-processes
missing traffic data which is then feed to the regression layer
(RL) to estimate a future traffic variable. In this context, the
IL aims to impute MVs as close to reality as possible. This
may be viewed as a reconstruction problem where applying a
function to a corrupted input x̃ leads to the actual input. Like
in the forecasting problem, this function can be approximated
using a deep learning approach to get an estimation of the
actual input x̂ which we derive in the following section.

3. LEARNING TO GENERATE TRAFFIC DATA

Suppose we have a traffic sample (or image) x that is par-
tially occluded due to sensor or system failure. Missing data
could be anything if an underlying structure generating the
data does not exist. From traffic theory, we know that spa-
tiotemporal relationships and seasonality exists and therefore
one could guess the day type looking only at how morning
traffic is developing through time and space. Therefore, if
we learn how traffic data are generated, i.e., data distribution,
we would be able to reconstruct it when part of the input is
missing or even generate new traffic data.

3.1. Generative model

Let z be a continuous random latent variable which represents
the structure behind the data, f

′
denote a function that maps

z to data space and (1) a generative model parametrized with
θ where X̂ is the estimation ofX .

X ≈ X̂ = f
′
(z,θ) (1)

Our motivation is to learn f
′

that minimizes the error between
X and X̂ which is equivalent to maximize the probability dis-
tribution of the data pθ(X) in terms of θ, a maximum like-
lihood problem. As we are assuming that X was generated
by a random process involving z, we could integrate over the
joint probability as

pθ(X) =

∫
pθ(X, z)dz =

∫
pθ(z) pθ(X|z)dz . (2)

Unfortunately, (2) is intractable under this scenario [15, 16].
To circumvent this, authors of [15] and [16] proposed an effi-
cient algorithm for DNN. Instead of computing the intractable
marginal likelihood, they proposed to train as an optimization
problem the generative model (1) jointly with a recognition
(or inference) model using variational inference to approxi-
mate the true posterior pθ(X|z). Thus, the data model may
be viewed as consisting of two parts. The generative model
pθ(X, z) = pθ(z)pθ(X|z) which given z it produces a dis-
tribution over the possible corresponding values of x. The
inference model qφ(z|X) parameterized with φ, an approx-
imation to the intractable true posterior, which given a data
point x it produces a distribution over the possible values of
z from which the data point x could have been generated.
From there, a variational lower bound on the marginal likeli-
hood can be derived which can be optimized in terms ofφ and
θ at the same time [15, 16]. This yielded the known objective
function (3) where the first term is the expected reconstruc-
tion error and the second term is the Kullback-Leibler (KL)
divergence of the approximate posterior from the prior.

L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]
−DKL(qφ(z|x) ‖ pθ(z))

(3)

3.2. Variational autoencoder

The aforementioned model may be implemented using an au-
toencoder architecture: the inference model as an encoder and
the generative model as a decoder (see Fig. 1). First, we let
the prior over the latent variables be an isotropic multivari-
ate Gaussian p(z) = N (0, I). Note that this allows for a
continuous latent (or code) space. Then, we let the inference
model qφ(z|x) be a multivariate Gaussian with a diagonal
covariance structure. This is modeled as the encoder using a
1-layer multilayer perceptron (MLP) with weights and biases
φ = {W1,W2,W3, b1, b2, b3} whose outputs are the mean µ
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Fig. 2. Reconstruction of a corrupted sample using our VAE
implementation. y-axis shows 6 hours of speed data [km/h].
x-axis represents each detector.

and s.d. σ:

h = ReLU(W 1 x+ b1)

µ =W 2h+ b2

σ =W 3h+ b3 .

(4)

Likewise, we let pθ(x|z) be a multivariate Gaussian whose
distribution parameters are computed from z with a 1-layer
MLP with weights and biases θ = {W4,W5, b4, b5} (decoder
of Fig. 1). The decoder output is defined as

x̂ =W 5ReLU(W 4 z + b4) + b5 , (5)

where its input are codes sampled from the posterior z ∼
qφ(z|x). Now, both the prior and the approximated posterior
are Gaussian. This allows a reparametrization of z that avoids
derivation of the sampling procedure which is needed prior
to be able to train the whole network using backpropagation
[15, 16]. Moreover, the second term in (3) can be analytically
derived resulting in (6), where J is the dimensionality of code
space and j indicates each component.

DKL(qφ(z|x) ‖ p(z)) =
1

2

J∑
j=1

(1 + log σj
2 − µj

2 − σj2)

(6)

3.3. Missing data imputation

As traffic data are real valued, we use the mean squared error
(MSE) betweenx and x̂ as the reconstruction error term in (3)
to train the whole network. Once trained, we can reconstruct
a corrupted traffic data sample like in Fig. 2. First, MVs need
to be random initialized. The resulting image is then encoded
sampling from z ∼ N (µ,σ) where µ and σ are given by the
encoder (4), i.e., sampling from the inference model. Next,
a reconstructed image x̂ can be obtained when the resulting
code is mapped back to data space using the decoder (5), i.e.,
sampling from the generative model. Finally, this imputa-
tion procedure can be iterated until convergence simulating a
Markov chain that has been shown that converges to the true
marginal distribution of missing values given observed values
[16].

Fig. 3. Distribution over the dataset of the induced missing
values (white fields). Each column shows two years of 5-
minute samples corresponding to each detector.

4. EXPERIMENTATION

Experiments were conducted on data collected from 31 loop
detectors installed on a south-bound section of Interstate 5
(I-5). Traffic data are available from the freeway Performance
Measurement System (PeMS1) of the California Department
of Transportation (Caltrans) which has been widely used
in traffic forecasting literature. Detectors used span spaced
equally apart 82.4 km of the highway in San Diego County,
concretely from post mile (PM) 1.1 to 52.3. Each detector
reports the speed, occupancy and flow. Data is aggregated
into 5-minute intervals including a reliable measure of data
quality showing the percent of observed samples. Incorrect
values are filtered out while missing samples are imputed
using linear regression [19]. Data collected covers the entire
period from 2015 until 2017.

Although the dataset contained missing values, we could
not directly use those for evaluation as their values were im-
puted. Instead, we considered the PeMS data quality measure
and produced artificial missing data (11.28% on test data). We
considered all 5-minute samples that do not meet an arbitrary
defined 75% quality measure as missing values. Under this
assumption, Fig. 3 shows mainly a Not Missing at Random
(NMAR) pattern where consecutive missing values are found
on not so random time instants and detectors. This is consis-
tent with missingness types analyzed in literature [7, 14].

4.1. Evaluation task

We evaluated various imputation methods prior to the super-
vised regression task of DNN traffic forecasting (see Fig. 1
and Sec. 2 defined problem). In interest of faster training,
we aimed to estimate 1 hour ahead (h = 12) traffic speed
of sensor number 15 (m = 1), the one presenting less cor-
rupted data (0.07%). The last 3 hours of traffic speed sam-
ples were used (n = 36) as input, x ∈ R36×31. Evaluation
was done on all possible 6-hour images containing MVs from
2016 (105360 samples) while the rest was used for training
(105072 samples). IL and RL were trained using training data

1http://pems.dot.ca.gov
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Table 1. RMSE [km/h] — MAPE [%] results on test data. MCAR–(%) indicates the proportion of generated missing data.
The data compression factor value is shown between parenthesis near each imputation method.

Original NMAR MCAR–10 MCAR–20 MCAR–40

RL 5.53 — 3.04 19.37 — 13.50 27.24 — 20.05 30.07 — 22.75 33.28 — 26.20
PCA (11.16) + RL N/A 12.42 — 7.82 10.68 — 6.79 14.35 — 9.40 18.46 — 12.84
AE (11.16) + RL N/A 9.74 — 5.69 10.69 — 6.91 14.02 — 9.46 18.16 — 12.92
VAE (11.16) + RL N/A 5.89 — 3.23 8.98 — 5.52 11.79 — 7.46 15.01 — 9.78
VAE (22.32) + RL N/A 8.70 — 5.27 8.58 — 5.28 10.61 — 6.64 11.98 — 7.70
VAE (111.6) + RL N/A 7.71 — 4.53 7.86 — 4.58 8.57 — 5.03 9.18 — 5.38

containing the imputed missing values by PeMS. Each exper-
iment was conducted 10 times and we reported the mean of
root mean square error (RMSE) and mean absolute percent-
age error (MAPE) in Table 1. We did not measure the error
between original data and reconstruction because imputation
requirements may vary depending on the final application.

IL. We compared our proposal of Sec. 3 (VAE) against a
non-linear autoencoder (AE) and principal component anal-
ysis (PCA). All missing values were treated as zero prior to
each imputation method for fair comparison. Details of VAE
can be found in Sec. 3.2. On the AE, ReLU was used for
each hidden layer of 512 neurons except for the output. We
trained both with a batch size of 128 using a random valida-
tion split of 10% for early stopping. We used Adam optimizer
with a learning rate of 5e−4 [20]. Code dimension was first
arbitrary set to 100 resulting in a data compression factor of
11.16. Input was normalized to zero mean and unit variance.

RL. We trained a 2-layer MLP where each hidden layer was
composed of 100 neurons with sigmoid activations. l2 regu-
larization was used to prevent overfitting. Input was normal-
ized to zero mean and unit variance. The MSE was minimized
using stochastic gradient descent with default Adam. Train-
ing was stopped using early stopping to ensure for the best
generalization. RL architecture showed better performance
compared to a naive approach (where the last input sample
is used as estimation). On the original test data, RL showed
a 34.8% and 25.3% improvement on RMSE and MAPE, re-
spectively, which was considered as a benchmark for the eval-
uation purpose.

4.2. Results

The proposed VAE implementation showed an RMSE im-
provement of 69.6%, 52.6% and 39.5% over RL, PCA and
AE on NMAR, respectively. Likewise, VAE showed superior
performance for each different missing value proportion on
MCAR. For example, on MCAR–40, VAE showed an RMSE
improvement of 54.9%, 18.7% and 17.3% over RL, PCA and
AE, respectively. The main difference between VAE and AE
is that a regularizing term on the objective function is im-

posed on the former to force the model to learn a continuous
code space. This indicates that learning the p(X) helps to
infer missing data as the model is able to decode plausible
unseen data samples from every point in the latent space that
has a reasonable probability under the prior, which validates
our initial assumption. We also found that non-linearity helps
to impute MVs when larger gaps of missing data are found
(NMAR pattern). Looking at the VAE and AE performance
against PCA in Table 1 on NMAR data, the linear model per-
forms poorly. However, no relevant differences were found
between PCA and AE on MCAR. In this case, the PCA per-
forms similarly to AE because of the MCAR pattern which
implies less consecutive missing values, thus the linear model
is able to perform better. Another interesting finding is that
VAE performed better in NMAR than MCAR–10 even when
the missing data proportion of the former is greater. We also
varied VAE’s code dimension and provided some results on
Table 1. Results showed that accuracy increased jointly with
the compression factor but to a certain extent. Constraining
code space forces the network to learn better features until
the space becomes small enough. Same thing happened while
increasing the code dimension. This suggested the existence
of a lower and higher bound where only an insignificant im-
provement can be observed, which led us to conclude that the
dimension of the code must be empirically defined. All this
makes the proposed method suitable for real-world dataset
where mostly NMAR patterns are found (e.g., Fig. 3).

5. CONCLUSION & FUTURE WORK

In this work, we proposed an implementation of VAE that
was able to capture the traffic data distribution and there-
fore its underlying characteristics of traffic. We showed that
DNN traffic forecasting accuracy deteriorates with increasing
missing data proportion and thus we evaluated different im-
putation methods prior to traffic speed forecasting. Our pro-
posal showed superior performance against other approaches
for each evaluation task (e.g., 52.6% RMSE improvement).
Besides, the learned latent space can be exploited for data
compression, data augmentation, traffic classification and
anomaly detection which are left as future work.
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