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ABSTRACT

We consider the structure learning problem of Gaussian graph-
ical models when the underlying graph is semi-sparse. More
specifically, we assume that the number of edges in the graph
grows quadratically with the dimension P . Similar to the case
of sparse graphs, the problem is formulated as maximizing the
data log-likelihood with an `1 norm penalty on the precision
matrix (the inverse covariance matrix) that promotes sparsity.
We notice that the time complexity of all existing methods is
at least O(P 3) under the scenario of semi-sparse graphs, thus
severely hindering their applications to high-dimensional data.
By contrast, the time complexity of the proposed method is
only O(P 2) with the help of stochastic gradients. We prove
the convergence of the proposed algorithm. Numerical results
show that the computational time of the proposed method is
shorter than that of the state-of-the-art methods when the graph
is semi-sparse.

Index Terms— Graphical Model, Structure Learning, S-
tochastic Gradient Descent, Gibbs Sampling.

1. INTRODUCTION

Graphical models display the most significant interactions
between variables, and can assist the interpretation of compli-
cated systems. In particular, we focus on Gaussian graphical
models (GGM) here, in which all variables jointly follow
a Gaussian distribution p(x) ∝ exp

{
− 1

2x
TKx + hTx

}
,

where K is the precision matrix and h is the potential vector.
Interestingly, the structure of the Gaussian graphical model is
characterized by the precision matrix: an edge between node
i and j is absent if and only if Kij = 0 [1]. Thus, in order
to learn the structure of the Gaussian graphical model, we
intend to estimate the precision matrix. The resulting problem
is formulated as maximizing the log-likelihood of K with an
`1-norm penalty on K (cf. Eq (1)), which encourages sparsity
in the off-diagonal entries [2]. The regularization or penalty
parameter λ in front of the `1-norm controls the trade-off be-
tween data fidelity and the sparsity of K. If λ is small, then
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the estimated K tends to be dense; otherwise, K tends to be
sparse.

In the sequel, we briefly review some existing determin-
istic methods for solving the problem. We can divide these
methods into 6 categories: (1) block (row/column) coordinate
descent methods including GLASSO [1], DP-GLASSO [3],
and SINCO [4]; (2) Nesterov’s smooth methods and their
variant [1, 5, 6]; (3) an inexact primal-dual path-following
interior-point algorithm proposed by Li and Toh [7]; (4) aug-
mented Lagrangian methods including ADM[8] and ALM [9],
and their variants PSM [10]; (5) proximal first-order methods,
such as G-ISTA [11]; (6) proximal Newton methods such as
QUIC [12], Newton-Lasso [13], and BIG&QUIC [14].

All the methods are deterministic and the exact gradient of
the objective is evaluated in each iteration, which involves the
computation of the matrix inverse K−1. The computational
complexity of inverting a P×P matrix is typicallyO(P 3). As
a result, the time complexity of the majority of the aforemen-
tioned methods is at least O(P 3) [1]-[10]. There are several
exceptions though, including QUIC [12], G-ISTA [11], and
BIG&QUIC [14]. The time complexity of these methods is
O(PM), where M is the number of nonzero elements in the
estimated precision matrix K. More concretely, such methods
only update a pruned subset of entries Kij in the precision
matrix in each iteration. For instance, QUIC and BIG&QUIC
select entries that satisfy either of the following two condition-
s: (1) Kij 6= 0 and (2) |∇Kij

f(K)| > λ, where ∇Kij
f(K)

is the gradient of the objective function f(K) with regard to
(w.r.t.) Kij . When λ is large, the resulting subset has a small
size in all iterations, and therefore, the precision matrix is
sparse as the algorithms proceed. By exploiting the sparsity of
the matrix, the computational complexity of matrix inversion
is only O(PM). However, these methods still suffer from the
issue of high computational complexity when the underlying
true graph is relatively dense and thus a small λ is preferred.
In particular, we introduce the notion of semi-sparse graphs
in this paper. In semi-sparse graphs, the number of edges |E|
grows quadratically with the number of nodes |V|, i.e.,

Definition 1. We call the graph family {Gi} as semi-sparse if:

∃c0 ∈ R+,∀Gi ∈ {Gi} satisfies
|Ei|

|Vi| × (|Vi| − 1)/2
= c0.
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where R+ denotes the set of positive real number.

Under this scenario, the time complexity of QUIC, G-ISTA,
and BIG&QUIC is still O(P 3). This issue impedes the ap-
plication of such methods to high-dimensional semi-sparse
graphs.

As a remedy, we propose a novel method by leveraging
stochastic subgradients [15] when updating the precision ma-
trix K. Instead of calculating the exact gradient as in the
literature, we resort to a noisy but unbiased estimate of the gra-
dient that is computationally cheap to evaluate. In other words,
we bypass the computation of the matrix inverse by finding
a computationally efficient estimate of it. The resulting time
complexity of the proposed algorithm is only O(P 2), whereas
the complexity of the existing methods is a least O(P 3) when
the graph is semi-sparse.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose a GSGD (Gibbs sampling-based Stochastic
subGradient Descent) method for learning sparse precision
matrices. In Section 3, we theoretically analyze the conver-
gence of the proposed method. In Section 4, we compare the
proposed method with the state-of-the-art methods using both
synthetic and real data. Finally, we offer concluding remarks
in Section 5.

2. STRUCTURE LEARNING BY STOCHASTIC
SUBGRADIENT DESCENT

2.1. Structure Learning of Gaussian Graphical Models

We aim to learn the precision matrix given N multivariate
Gaussian distributed observations x(1:N). The resulting opti-
mization problem can be formulated as [1]:

K̂ , argmin
K�0

tr(SK)− log detK + λ‖K‖1︸ ︷︷ ︸
f(K)

, (1)

where f(K) is the objective function to be minimized, S =

1/N
∑N
i=1 x

(i){x(i)}T is the empirical or sample covariance
matrix, ‖ · ‖1 is the `1 norm (i.e., the sum of the absolute value
of all the elements in the matrix), and λ is the regularization or
penalty parameter which balances the tradeoff between data
fidelity and model sparsity. One intuitive approach to finding
the precision matrix K that minimizes f(K) is to update K
along the opposite direction of the subgradient of f(K) w.r.t.
K. The exact subgradient can be expressed as:

∇Kf(K) = S −K−1 + Λ, (2)

where Λij = sgn(Kij)λ, where sgn(·) is the sign operator.
Note that the computational bottleneck in (2) lies in the matrix
inversion K−1. As mentioned in Section 1, exact gradients are
employed in the aforementioned deterministic methods [1]-
[14]. Due to the matrix inversion term in the exact gradient, the
time complexity of these methods is O(P 3) for semi-sparse
graphs.

2.2. Stochastic Gradient Descent

To settle the problem of the high time complexity, we ex-
ploit stochastic gradients when updating K. Stochastic op-
timization) [15] iteratively updates K along the direction of
an unbiased stochastic estimation of the exact gradient. More
precisely, we seek an unbiased estimate g(K) of the exact
subgradient ∇Kf(K), that is, E[g(K)] = ∇Kf(K), where
E[·] denotes expectation operation, and refer to g(K) as the
stochastic subgradient. It is often computationally cheaper
to evaluate the stochastic gradient g(K) than∇Kf(K). The
stochastic subgradient descent algorithm then proceeds by it-
eratively following realizations of −g(K) with the step size
ρ(κ) in iteration κ:

K(κ) = K(κ−1) − ρ(κ)g(K(κ−1)). (3)

When the step size ρ(κ) is set properly, this algorithm is guar-
anteed to converge to the global minimum of f(K), which
will be analyzed in the next section.

Recall that the high computational complexity of comput-
ing ∇Kf(K) in Eq. (2) arises from the matrix inverse K−1.
As such, we intend to find an unbiased estimate of K−1 that
can be efficiently calculated. To this end, we consider K(κ)

as the precision matrix of a zero-mean Gaussian distribution
and draw samples from this Gaussian distribution N (0,K−1

(κ)).
It follows that the covariance of the samples is an unbiased
estimate of K−1

(κ) [16]. Gibbs sampling [17] is exploited to
sample fromN (0,K−1

(κ)). Specifically, starting from a random
vector y(0), we can sample the ith component of t-th Gibbs
sample y(t)i from the following one-dimensional conditional
distribution:

p(yi|y(t)1 , · · · , y(t)i−1, y
(t−1)
i+1 , · · · , y(t−1)

P )

=N

(∑i−1
j=1Kijy

(t)
j +

∑P
j=i+1Kijy

(t−1)
j

Kii
,

1

Kii

)
,

where (
∑i−1
j=1Kijy

(t)
j +

∑P
j=i+1Kijy

(t−1)
j )/Kii is the con-

ditional mean and 1/Kii is the conditional variance. We then
cycle through i = 1, · · · , P until generating L Gibbs samples.
The estimate of K−1

(κ) can be expressed as the covariance of
the Gibbs samples:

K̂−1
(κ) =

1

L

L∑
t=1

y(t)y(t)
T , (4)

and so the stochastic subgradient can be written as:

g(K(κ)) , S − K̂−1
(κ) + Λ. (5)

When setting the number of Gibbs samples L to be invariant
w.r.t. the dimension P , the computational complexity of eval-
uating g(K(κ)) (5) is only O(P 2). In our later experiments,
a constant L = 100 proves applicable. Note that the above
procedure spares us from computing K−1

(κ) deterministically,
whose time complexity is O(P 3).
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2.3. Positive-Definiteness of K

In order to check the positive-definiteness of K(κ) in (3), we
evaluate the smallest eigenvalue of K(κ) via the Lanczos pro-
cess [18, 19, 20]. The time complexity of this approach is only
O(P 2). If the smallest eigenvalue is positive, we proceed to
the next iteration; otherwise, we halve the step size ρ(κ) until
the value is positive.

3. THEORETICAL RESULTS

In this section we analyze the convergence of the proposed
algorithm. We will show that the algorithm is guaranteed
to converge to the global optimum with a convergence rate
of O(ln(κ)/κ). We first start with a lemma on the strong
convexity of the objective function f(K),

Lemma 1. The objective function f(K) in (1) is ξ-strongly
convex.

Note that the negative log-determinant term in (1) is strongly
convex and it follows that above lemma holds.

Next, we show that the second-order moments of the s-
tochastic gradients g(K) is finite, that is,

Lemma 2. ∃ G, so that ∀ κ, E[‖g(K(κ))‖2] < G2.

We defer the proof to the journal version of this work.
Given Lemma 1 and Lemma 2, we can now analyze the

convergence rate of stochastic subgradient descent algorithms
according to the following theorem:

Theorem 1. [21, 22] Suppose that the objective function
f(K) is ξ-strongly convex, the stochastic gradients g(K(κ))
are unbiased, and E[‖g(K(κ))‖2] < G2 for all κ. Consid-
er stochastic subgradient descent with step size ρ(κ) = c/κ,
where c is a positive constant. Then the stochastic subgradient
descent algorithm converges to the global optimum of f(K)
with convergence rate O(ln(κ)/κ).

We notice that g(K(κ)) resulting from the Gibbs sampler
is only asymptotically unbiased when L → ∞. In practice,
however, a finite L still guarantees the convergence.

On the other hand, instead of setting the stepsize to be
c/κ as in Theorem 1, we utilize a dynamic step size scheme,
since such schemes are shown to speed up the convergence
both theoretically and practically [23, 24]. Concretely, we
determine the step size as:

ρ(κ) = ηκ
∥∥E[g]TE[g]

∥∥2
Fro

‖E[g2]‖2Fro
,

E[g2](κ) = βE[g2](κ−1) + (1− β)g(K(κ))
T g(K(κ)),

E[g](κ) = βE[g](κ−1) + (1− β)g(K(κ)),

(6)

where E[g](κ) and E[g2](κ) respectively represent the first
and second order moment of the stochastic gradient in it-
eration κ and they are approximated by the corresponding

Algorithm 1: Gibbs sampling-based Stochastic subGra-
dient Descent (GSGD)

Input :Data x(1:N), penalty parameter λ, number of
samples L = 100, β = 0.9, η = 0.99

Output :K, the sparse precision matrix
1 Initialize the first guess as a diagonal matrix K(0)

satisfying [K(0)]ii = (Sii + λ)−1;
2 while (1) do
3 Generate {y(t)|t = 1, 2 . . . L} via Gibbs sampling;
4 Compute the subgradient (4), and step size (6);
5 while (1) do
6 Compute the smallest eigenvalue λmin of the

updated Knew;
7 Update K as in (3);
8 if λmin > 0 then
9 break;

10 else
11 halve the step size and update Knew;
12 end
13 end
14 if converged; then
15 break;
16 end
17 end

moving average, η is a shrinking parameter, and 0 < β < 1
is a weight parameter, and ‖ · ‖Fro denotes Frobenius norm.
Note that the second order moment can be decomposed as
E[g2] = E[g]TE[g] + V[g], where V[g] denotes the variance
of the stochastic gradient. If the variance V[g] is large, the
above scheme shrinks the step size, thus mitigating the risk of
taking a large step in a wrong direction. Otherwise, the step
size becomes large, and the convergence is accelerated. We
name the resulting algorithm GSGD (Gibbs sampling-based
Stochastic subGradient Descent). The algorithm with default
settings of parameters is summarized in Algorithm 1.

4. NUMERICAL RESULTS

In this section, we compare the proposed method with the
state-of-the-art methods QUIC [12] and G-ISTA [11].1 We
will analyze both synthetic and real data. All the computations
are performed on 64-bit OS Windows server 2012 with two
Intel Xeon(R) CPU E5-2690 v2 @3.00GHz processors with
32.0 GB RAM. Note that QUIC and G-ISTA are implemented
in C++, while the proposed GSGD method is implemented in
MATLAB.

1We notice that the methods proposed more recently, such as
BIG&QUIC [14] and BCDIC [25], are much slower than QUIC and G-ISTA
when applied to semi-sparse graphs. Therefore, we only report the results of
QUIC and G-ISTA.
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Fig. 1: Computational Time as a function of dimension P for
different λ values.

4.1. Synthetic Data

We generate precision matrices with random sparsity pattern
and make sure that the number of edges increases quadrati-
cally the dimension P . More specifically, We investigate the
performance of all methods as the dimension increases from
1,000 to 15,000. The graph density is fixed to be 1% and
the sample size is 1,000. The results of computational time
as a function of P is shown in Figure 1. Here, we choose
λ = {0.02, 0.04, 0.06} such that the true graph can be well
estimated. We fit the computational time by a line to explicitly
show the increasing trend. We can find that the computational
time of GSGD is approximately a quadratic function of the
dimension, regardless of the λ value. However, the compu-
tational time of QUIC and G-ISTA is sensitive to the chosen
λ, as expected. The slope of the fitted line increases as λ
decreases. Moreover, it is approximately a cubic function of
P . On the other hand, we also show the mean square error
(MSE) between the estimated precision matrix resulting from
GSGD and the two benchmark methods in ??. The MSE is
very small, indicating that GSGD achieves the same accuracy
with QUIC and G-ISTA but with less amount of computational
time, especially for high dimensional cases.

4.2. Real Data

We consider two real gene data sets, including Lukemia data
and Estrogen receptor (ER). The first data set was developed
for cancer classification originally and it contains 1255 genes
monitored by microarrays from 72 samples; the second one, on
the other hand, was collected for predicting disease outcome
via gene expressions, which consists of 158 samples for 692
genes.
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Fig. 2: The computational time and density of estimated graph-
s as a function of λ. The results of Lukemia and ER data are
shown respectively on left (a-b) and right (c-d).

In Figure 2, we depict the computational time and the
density of the estimated graph as a function of λ. The pro-
posed GSGD becomes faster than QUIC and G-ISTA as λ
decreases. More precisely, GSGD outperforms the other two
methods in terms of running time when λ = 0.12 for the data
Lukemia and λ = 0.06 for ER. The corresponding density
of the estimated graphs at these λ values are around 10%. In
other words, the graphs are still sparse. We emphasize that we
prefer a graph that is slightly denser than the ground truth in
practice [26], since the false positives can be further removed
in future analysis whereas the false negatives are buried by the
massive number of true negatives. Hence, the proposed GSGD
is favored in practice, since it is able to yield a relatively dense
graph with the smallest amount of computational time.

5. CONCLUSION

In this paper, we present a novel method named GSGD to
address the structure learning problem of semi-sparse Gaus-
sian graphical models. We prove its convergence and further
validate the method on both synthetic and real data.
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