
CONVERGENCE BOUNDS FOR COMPRESSED GRADIENT METHODS WITH MEMORY
BASED ERROR COMPENSATION

Sarit Khirirat, Sindri Magnússon, Mikael Johansson

ABSTRACT
The veritable scale of modern data necessitates information
compression in parallel/distributed big-data optimization.
Compression schemes using memory-based error compensa-
tion have displayed superior performance in practice, how-
ever, to date there are no theoretical explanations for these
observed advantages. This paper provides the first theoreti-
cal support for why such compression schemes yields higher
accuracy solutions in optimization. Our results cover both
gradient and incremental gradient algorithms for quadratic
optimization. Unlike previous works, our theoretical results
explicitly quantify the accuracy gains from error compen-
sation, especially for ill-conditioned problems. Finally, the
numerical results on linear least-squares problems validate
the benefit of error compensation and demonstrate tightness
of our convergence guarantees.

Index Terms— Quadratic optimization, quantization,
gradient descent, incremental gradient methods.

1. INTRODUCTION

Parallel and distributed optimization algorithms play an im-
portant role in large-scale signal processing and machine
learning. In essence, these algorithms are based on splitting
large-scale problems among many processors that coordinate
their computations to cooperatively find an optimal solution.
Standard algorithms, which exchange full precision infor-
mation among computing nodes, can easily run into com-
munication bottlenecks that slow down convergence speed,
especially when decision vectors are large and dense [1]. To
alleviate this problem, several heuristic gradient compression
strategies have recently been proposed [2, 3, 4, 5, 6], and opti-
mization algorithms operating on compressed data have been
developed [1, 7, 8, 9, 10, 11]. These studies show that while
gradient compression can reduce the communication load
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significantly, both convergence speed and solution accuracy
deteriorate if the quantization is too coarse.

To mitigate such adverse effects, one recent idea is to
adopt error compensation, where the current gradient is com-
bined with information on the accumulated quantization er-
rors from previous iterations. It has been observed empir-
ically that gradient algorithms with aggressive compression
can benefit significantly from error compensation [12, 13].
Motivated by these encouraging experiments, a number of re-
cent works analyzed the convergence of different optimiza-
tion algorithms with error compensation, and confirmed their
practical benefits in numerical experiments (e.g. in, [14, 15,
16]). However, as of today, no theoretical justification for the
increased solution accuracy of error compensation has been
published. In this paper, we provide the first theoretical sup-
port for how error compensation can improve performance of
optimization algorithms which operate on compressed gradi-
ents.

Specifically, this paper analyzes convergence rates and
solution accuracy of compressed gradient descent and com-
pressed incremental gradient methods. Our theoretical re-
sults indicate that the error compensation scheme reduces the
residual by approximately a factor of a condition number for
gradient descent; numerical results confirm that this bound
is reasonably tight. We also quantify the impact of gradient
compression and error compensation on incremental gradient
methods. In particular, the error compensation can decrease
the residual error by the condition number in some cases. Due
to page limitations, this paper only considers minimization of
strongly convex quadratic functions. However, most of the
results can be extended to general strongly convex functions.

1.1. Notations

We let N,N0,Z be the set of natural numbers, the set of
natural numbers including zero, and the set of integers, re-
spectively. The set {0, 1, . . . , T} is denoted [0, T ]. For
x ∈ Rd, ‖x‖ and ‖x‖1 are the `2 norm and `1 norm of
x, respectively, while xi is the ith coordinate of x. The
d-dimensional identity matrix is denoted Id. A matrix
A ∈ Rd×d has eigenvalues λ1(A), . . . , λd(A) and spectral
norm is ‖A‖ = maxx 6=0 ‖Ax‖/‖x‖ = maxi∈[1,d]|λi(A)|.
We define µ = mini∈[1,d]λi(A) and L = maxi∈[1,d]λi(A);
note that A is positive definite if and only if µ > 0. Fi-
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nally, U(a, b) is the uniform distribution on the interval [a, b],
and N (µ, σ2) is the Gaussian distribution with mean µ and
variance σ2.

2. COMPRESSION

In this paper, we focus on the following family of gradient
compression schemes.

Definition 1. The mapping Q : Rd → Rd is a determinis-
tic bounded error compressor (BEC) if there exists a positive
constant ε such that

‖Q(z)− z‖ ≤ ε, ∀z ∈ Rd.

According to Definition 1, the lower ε is, the higher com-
pression accuracy is. Even though Definition 1 is abstract,
it covers many quantizations of practical interest. One such
example is the rounding quantizer:

Definition 2 ([10, 11]). For a given quantization resolution
∆ > 0, the rounding quantizer Qr : Rd → Λ is defined as

[Qr(z)]i = t∆, if (t− 0.5)∆ ≤ zi < (t+ 0.5)∆,

where z ∈ Rd and the quatization lattice is defined by

Λ = {t∆ : t ∈ Z}.

The rounding quantizer was proposed for incremental gra-
dient algorithms in [10] and subsequently used for ADMM
in [11]. It was shown in [11] that the rounding quantizer is a
BEC with ε = ∆

√
d/2.

Another family of BECs arises when gradients are com-
pressed using a bounded lattice set (i.e. t is bounded between
two finite values) as proposed by, e.g., [5, 17].

3. COMPRESSED GD

To build intuition for how error compensation benefits solu-
tion accuracy, we start by studying the compressed gradient
descent algorithm. The result is of significance for distributed
optimization using dual decomposition methods, where the
dual function is typically optimized using gradient descent
techniques [7, 18, 19].

Consider the quadratic optimization problem

minimize
x∈Rd

f(x) =
1

2
xTAx+ bTx, (1)

where A ∈ Rd×d is a symmetric matrix and b ∈ Rd is a
column vector.

The classical gradient descent (GD) algorithm for solving
(1) forms a sequence {xk}k∈N via

xk+1 = xk − γ∇f(xk),

from a given initial point x0 and some fixed positive step-size
γ. It is well-known (see, e.g., [20, 21]) that GD is guaranteed
to converge toward the optimum with linear rate when A is
positive definite.

The most straightforward way to reduce communication
is to simply compress the full gradient. This leads to the com-
pressed gradient descent (CGD) recursion

xk+1 = xk − γQ(∇f(xk)). (2)

We will assume that Q(·) is a BEC according to Definition 1.
It is sometimes convenient to re-write this recursion as

xk+1 = xk − γ (∇f(xk) + ek) , (3)

where ek = Q(∇f(xk))−∇f(xk).
Our first result characterizes the convergence of the iter-

ates produced by the compressed gradient descent recursion.

Theorem 1. Consider the quadratic optimization problem (1)
where µ·Id � A � L·Id and µ < L for positive real numbers
µ,L. Then, the iterates {xk}k∈N generated by (3) satisfy

‖xk − x?‖ ≤ ρk‖x0 − x?‖+
1

µ
ε,

where

ρ =

{
1− 1/κ if γ = 1/L
1− 2/(κ+ 1) if γ = 2/(µ+ L)

,

and κ = L/µ.

Note that we recover the classical results of GD [21, 20]
when we let ε = 0 in Theorem 1. In addition, the guaranteed
bound on the residual error of CGD is ε/µ, which increases as
the strong convexity modulus µ decreases (i.e. as the function
becomes “less” strongly convex).

This dependence on µ can be removed by adopting error
compensation. We consider the following error-compensated
compressed GD (EC-CGD) scheme

xk+1 = xk − γQ(∇f(xk) +Bmk), and
mk+1 = ∇f(xk) +Bmk −Q(∇f(xk) +Bmk),

(4)

where B ∈ Rd×d. Unlike CGD, EC-CGD keeps the memory
of the sequence {mk}k∈N to correct the gradient information
in each iteration. Our update is similar to that proposed by
[16] and [14] if we let B = βId and B = (1/γ)Id, respec-
tively. For analysis purposes, we let ck = −mk and re-write
the EC-CGD updates (4) as

xk+1 = xk − γ (∇f(xk) + ek)

ek = Q(∇f(xk)−Bck)−∇f(xk), and
ck+1 = Q(∇f(xk)−Bck)−∇f(xk) +Bck.

(5)

The next result characterizes the convergenceof EC-CGD:
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Theorem 2 (Strongly convex case). Consider the quadratic
optimization problem (1) where µ · Id � A � L · Id for some
positive real numbers µ,L. Assume that B = Id − γA and
c0 = 0. Then, the iterates {xk}k∈N generated by (5) satisfy

‖xk − x?‖ ≤ ρk‖x0 − x?‖+ γε,

where

ρ =

{
1− 1/κ if γ = 1/L
1− 2/(κ+ 1) if γ = 2/(µ+ L)

,

and κ = L/µ.

Like Theorem 1, Theorem 2 with ε = 0 recovers the clas-
sical results of GD. More importantly, Theorem 2 implies
that EC-CGD has the same convergence rate as CGD, but
lower residual error. In particular, EC-CGD with γ = 1/L
and γ = 2/(µ + L) reduces the quantization error ε by κ
and (κ + 1)/2, respectively. Thus, the error compensation
technique improves the solution accuracy significantly when
the problem is ill-conditioned (L/µ is large). In addition,
two step-size choices reveal a trade-off between convergence
speed and quantization error; the first step-size choice in The-
orem 2 results in slower convergence but smaller residual er-
ror than the second step-size choice.

Also, the bound for EC-CGD from Theorem 2 is shown
to be tight in Section 5.

4. COMPRESSED IGM

This section considers minimization problems with separable
quadratic loss functions

minimize
x∈Rd

f(x) =

m∑
i=1

fi(x). (6)

Here, each fi is on the form fi(x) = (1/2)xTAix + bTi x
where Ai ∈ Rd×d is positive definite and bi ∈ Rd. Problem
(6) arises in several machine learning and signal processing
applications. The simplest instance may be standard least-
squares. Due to the explosive scale of datasets, modern appli-
cations focus on solving (6) when m is extremely large.

The incremental gradient method (IGM) is a popular first-
order method due to its low per-iteration cost and its conver-
gence guarantee toward the sub-optimum, [22]. IGM updates
the iterate xik as

xi+1
k = xik − γ∇fi(xik), for i = 1, 2, . . . ,m

with a fixed positive step-size γ. We set x1k+1 = xm+1
k and

refer to {x1k}k∈N as the outer iterates.
To study the effect of using lossy gradient information, we

consider the convergence of compressed incremental gradient
methods (CIGM), which updates the iterate xik according to

xi+1
k = xik − γQ(∇fi(xik)) for i = 1, 2, . . . ,m (7)

given the initial point x0 and a fixed positive step-size γ.
Here, we initialize x10 = x0 and set x1k+1 = xm+1

k . Un-
like [14], we consider the deterministic version of CIGM. It
is easy to verify that the equivalent update of (7) is

xi+1
k = xik − γ

(
∇fi(xik) + eik

)
, (8)

where eik = Q(∇fi(xik))−∇fi(xik).

Theorem 3. Consider the quadratic optimization problem
(1) where µ̄ · Id � Ai � L̄ · Id and µ̄ > 0. Assume that
‖∇fi(x?)‖ ≤ σ for some finite σ. Then, the iterates {x1k}k∈N
generated by (8) with γ = 1/(θL̄) and 0 < θ < L̄/µ̄ satisfy

‖x1k − x?‖ ≤ ρm·k‖x0 − x?‖+ e,

where

ρ = 1− µ̄

θL̄
, and e =

1

1− ρm
γ

1− ρ (σ + ε).

To show the benefit of error compensation scheme,
we consider the error-compensated compressed IGM (EC-
CIGM) which forms the following recursion

xi+1
k = xik − γQ(∇fi(xik) +Bim

i
k) and

mi+1
k = ∇fi(xik) +Bim

i
k −Q(∇fi(xik) +Bim

i
k)

(9)

for i = 1, 2, . . . ,m. We let x1k+1 = xm+1
k and set m1

k = 0
in each cycle i. In the special case that Bi = (1/γ) · Id,
the updates reduce to the deterministic version of SGD with
memory proposed in [14]. In our analysis, we consider the
equivalent update

xi+1
k = xik − γ

(
∇fi(xik) + eik

)
eik = Q(∇fi(xik)−Bic

i
k)−∇fi(xik), and

ci+1
k = Q(∇fi(xik)−Bic

i
k)−∇fi(xik) +Bic

i
k.

(10)

obtained by letting cik = −mi
k in (9).

Theorem 4. Consider the quadratic optimization problem (1)
where µ̄ · Id � Ai � L̄ · Id and µ̄ > 0.. Assume that
‖∇fi(x?)‖ ≤ σ with σ finite, let Bi = Id − γAi and set
c1k = 0 for each k. Then, the iterates {x1k}k∈N generated by
(10) with γ = 1/(θL̄) and 0 < θ < L̄/µ̄ satisfy

‖x1k − x?‖ ≤ ρm·k‖x0 − x?‖+ e.

where

ρ = 1− µ̄

θL̄
, and e =

1

1− ρm
γ

1− ρ (σ + (1− ρ)ε) .

In contrast to the results in [14, 16, 15], Theorem 3 and
4 demonstrate how the error compensation improves the so-
lution accuracy of CIGM while maintaining the same linear
convergence rate. Since the residual error results from σ and
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the quatization accuracy ε, we consider two extreme cases. If
σ � ε, then error compensation does not have any signifi-
cant impact on the solution accuracy. On the other hand, if
ε ≥ σ · min(1, θL̄/µ̄), then ε is the main contributor to the
residual error in Theorems 3 and 4. In this scenario, the error
compensation is able to decrease the residual error by a factor
1/(1− ρ) = θL̄/µ̄.

5. SIMULATION RESULTS
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Fig. 1. The performance of CGD and EC-CGD with their
theoretical bounds for least-squares problems.
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Fig. 2. The performance of CIGM and EC-CIGM for least-
squares problems when the number of mini-batch groups m
varies.

To validate our theoretical results, we consider the least-
squares problem, which is the minimization problem over the

objective function

f(x) =
1

2

n∑
j=1

(aTj x− cj)2,

where we are given n training samples (a1, c1), . . . , (an, cn)
where ai ∈ Rd is the training input with its associated output
ci ∈ R.

The least-squares problem can be cast into the quadratic
optimization problem (1) with

A =

n∑
j=1

aja
T
j , and b = −

n∑
j=1

ajcj .

Alternatively, it can be formulated as the minimization prob-
lem with separable quadratic loss functions (6) with

Ai =
i·B∑

j=(i−1)·B+1

aja
T
j , and bi =

i·B∑
j=(i−1)·B+1

ajcj ,

for i = 1, 2, . . . ,m, B = m · n is the mini-batch size,
and m is the number of mini-batch groups. Clearly, µ =
λmin(A), L = λmax(A), µ̄ = mini∈[1,m] λmin(Ai) and
L̄ = maxi∈[1,m] λmax(Ai).

We implemented the rounding quantizer, and all com-
pressed gradient-based optimization algorithms in MATLAB.
Each element of ai is randomly drawn from U(0, 1) and each
element of x? is drawn from N (0, 1), and we set bi = aTi x

?.
Therefore, x? is the optimum to the least-squares problem.
We set n = 40000, d = 1000, x0 = 0, γ = 1/L for CGD,
EC-CGD, and γ = 1/L̄ for CIGM and EC-CIGM.

From Figure 1, our theoretical bound for EC-CGD in The-
orem 2 is shown to be tight, and confirms that EC-CGD pro-
duces significantly higher accurate solution than CGD. Figure
2 indicates that EC-CIGM improves convergence speed and
solution accuracy especially when the number of mini-batch
groups m increases.

6. CONCLUSIONS

Motivated by how error compensation improves performance
of compressed optimization algorithms, this paper is the first
in the literature which shows such theoretical supports. We
analyze the convergence rates of compressed gradient de-
scent and incremental gradient algorithms for strongly con-
vex quadratic optimization. Our theoretical bounds explicitly
show that the error compensation strategy significantly re-
duces the compression error especially for ill-conditioned
problems, and have been validated to be tight in the numeri-
cal simulations on the least-squares problems.
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