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ABSTRACT

In this paper, we propose a novel and simple method for discov-
ery of Granger causality from noisy time series using Gaussian pro-
cesses. More specifically, we adopt the concept of Granger causal-
ity, but instead of using autoregressive models for establishing it,
we work with Gaussian processes. We show that information about
the Granger causality is encoded in the hyper-parameters of the used
Gaussian processes. The proposed approach is first validated on sim-
ulated data, and then used for understanding the interaction between
fetal heart rate and uterine activity in the last two hours before de-
livery and of interest in obstetrics. Our results indicate that uter-
ine activity affects fetal heart rate, which agrees with recent clinical
studies.

Index Terms— Gaussian processes, Granger causality, car-
diotocography, fetal heart rate, uterine activity

1. INTRODUCTION

The main goals of science are to understand Nature and, based on
this understanding, predict how the world around us evolves. The
identification of causal relationships is an important part of scien-
tific research, since it provides us with insights about consequences
for actions [1]. The gold standard for identifying causal relationships
is using controlled randomized experiments. However, in many situ-
ations, these experiments are either impractical, unethical, or simply
impossible [2]. The problem of inferring causal interactions from
data has challenged scientists and philosophers for centuries [3] and
many efforts have been made to solve it. [4].

Causal inference from time series is one important area of re-
search in this domain, where many concepts and methods have been
proposed. They include intervention causality [1, 5, 6], structural
causality [7] and Granger causality [8, 9] (see [10] for a detailed re-
view). The Granger causality is probably the most prominent and
most widely used concept although its usefulness is somewhat con-
troversial [10].

In practice, when detecting Granger causality a (vector) autore-
gressive (AR) model is often used, and yet in reality, many causal re-
lationships are likely to be nonlinear, this giving rise to doubts about
the approach [11]. Further, it has been shown that non-linearity can
be helpful in causal discovery [2]. Therefore, instead of using AR
models, we adopt the use of Gaussian processes (GPs) for this pur-
pose. They are more powerful for learning functions or mappings
and moreover, they can accommodate prior knowledge and assump-
tions easily. A similar idea was proposed in [12], for testing Granger
causality between time series using GPs. Unlike [12], instead of
only relying on model evidence for casual discovery, we directly
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learn the mappings of possible causes and use cross-validation and
model evidence for model selection. Further, we look into the hyper-
parameters for causal discovery, which is more natural in the model-
ing sense and more robust to over-fitting.

In this paper, we are also interested in making inference about
causality from cardiotocography (CTG). CTG is the most widely
used technology for monitoring the well-being of fetuses during la-
bor. CTG comprises of the fetal heart rate (FHR) and uterine ac-
tivity (UA) signals, which are both recorded and visually inspected
by clinicians. The interpretation of FHR recordings is a highly in-
tricate and complex task with high inter- and intra-variable evalua-
tions among obstetricians, notwithstanding the availability of various
clinical guidelines from both the National Institute of Child Health
and Human Development (NICHD) and the International Federation
of Gynecology and Obstetrics (FIGO) [13–15]. In fact, the current
guidelines for FHR evaluation have been criticized for simplistic in-
terpretation [16]. The classification of CTG tracings by computer-
ized systems remains a challenging problem [17]. For improved un-
derstanding of CTG recordings, the interactions between FHR trac-
ings and UA is crucial, and especially establishing if there is causal-
ity between them. Interestingly, this issue has been largely over-
looked in the literature of computerized analysis of CTG.

In the machine learning literature, Gaussian processes (GPs)
provide data-efficient and flexible Bayesian machinery for learn-
ing functions or mappings from data. GPs have been successfully
applied in both supervised and unsupervised learning tasks [18].
For example, in our previous work [19], we proposed a GP-based
method that employs UA signals to recover missing samples of FHR
recordings and had excellent results. This work also provided evi-
dence that the UA signals contain information about fetal well-being.
Also, there are many applications that exploit the hyper-parameters
of GPs for making inference. For example, in [20, 21], the hyper-
parameters are used for detecting change points, and in [22], for
epilepsy detection from electroencephalograms.

In this paper, we propose a novel and simple method for dis-
covery of Granger causality from noisy time series using GPs. Our
approach to finding the possible causes and effects is based on the
hyper-parameters of the GPs. Our hypothesis is that information
about causality is encoded in the covariances of the GPs, and in par-
ticular in the characteristic length scales of the used features by the
GPs. We use these length scales to define coefficients that reflect
on the direction of causality. We tested the method based on these
coefficients on simulated data and then applied it to CTG. The re-
sults indicate that the UA is a Granger cause of FHR. Our finding is
consistent with recent clinical studies [23].

The paper is organized as follows. In the next section, we pro-
vide a brief background on Granger causality and GPs. In Section
3, we present the details of our model. In Section 4, we describe
our experiment results. Finally, we conclude with final remarks in
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Section 5.

2. BACKGROUND

2.1. Granger causality

Two principles are fundamental in Granger causality: (i) the effect
does not precede its cause in time; (ii) the causal series contains
unique information about the series being caused that is not avail-
able otherwise. The Granger causality is usually tested using an AR
model or a vector autoregressive (VAR) model. For the bivariate
case, given x1(t) and x2(t), the AR models are

x1(t) =

p∑
j=1

a11,jx1(t− j) +
p∑
j=1

a12,jx2(t− j) + e1(t),

x2(t) =

p∑
j=1

a21,jx1(t− j) +
p∑
j=1

a22,jx2(t− j) + e2(t),

(1)

where p is the order of the model, and e1(t) and e2(t) are perturba-
tions. If the prediction error of x1(t) is reduced by using x2(t) or
equivalently, the coefficients {a12,j}pj=1 are jointly significantly dif-
ferent from zero, then x2(t) is a Granger cause of x1(t). A statistical
test is often performed where the null hypothesis is that {a12,j}pj=1

are jointly zero. Similarly, a test is performed on {a21,j}pj=1.

2.2. Gaussian Processes

By definition, a GP is a collection of random variables such that
every finite collection of those random variables has a joint Gaus-
sian distribution. This makes GPs suitable to model distributions
over functions, and infinite dimensionality becomes a bless instead
of a curse given their consistency property. To be more specific,
if y denotes an output and x signifies a vector of input variables,
and if y = f(x), where f(x) is a real-valued function, than a
GP can be seen as the distribution of the function f(x). This GP
is completely specified by its mean function m(x) and covariance
function kf (xi,xj), which are defined by m(x) = E[f(x)] and
kf (xi,xj) = E[(f(xi) − m(xi))(f(xj) − m(xj))]. In machine
learning, a GP is usually assumed to be zero mean, that is,m(x) = 0
for every x. It is also practical and common to assume the presence
of observation noise i.e.,

y = y(x) = f(x) + ε, (2)

where ε ∼ N (0, σ2
ε ) is additive white Gaussian noise.

In the GP regression framework, a prior distribution of the la-
tent function can be directly placed in the function space. With the
model and the Gaussian noise assumption, one can obtain tractable
posteriors of the latent function and marginal likelihoods, which
makes the GPs a powerful Bayesian non-parametric machinery for
learning functions or mappings. Although the function f(x) is non-
parameteric, the covariance function kf (xi,xj) is parameterized by
its set of hyper-parameters θ.

Let X = {xi}Ni=1 denote the collection of all input vectors, and
Kff the covariance matrix obtained by evaluating the covariance
function for X, i.e., Kff = kf (X,X). Then the prior probability
density function (pdf) of f given X is given by

p(f |X,θ) = N (f |0, Kff ). (3)

The hyper-parameters θ are learned in the training stage by maxi-
mizing the marginal likelihood or model evidence,

log p(y|X,θ) = logN (y|0, Kff + σ2
ε I)

= logN (y|0, K)

= −1

2
yTK−1y − 1

2
log |K| − N

2
log 2π.

(4)

If we have test inputs X∗, the mean predictive distribution
p(f∗|X∗,X,θ) will be Gaussian with a mean and covariance given
by

E(f∗) = [Kf (X∗,X)]K−1y, (5)

cov(f∗) = Kf (X∗,X∗)−[Kf (X∗,X)]K−1[Kf (X∗,X)]T . (6)
In this work, we use the time variable as an input and we do

not specify lengths of histories in the model. In other words, we
model the time series simply as functions of time and do not make
Markovian assumptions (as in AR processes). From (5), we see that
the mean of the predictive distribution is a linear combination of all
the previous observations.

2.3. Automatic Relevance Determination

The design of the covariance is of great importance, since it quan-
tifies the distance or similarity between the inputs to the covariance
between outputs. Thus, it encodes our prior knowledge or assump-
tions about the latent function, e.g., smoothness, periodicity, and sta-
tionarity. One of the most popular covariance functions is the radial
basis function (RBF), which for the 1-D case has the form

kRBF (xi, xj) = σ2
f exp(−

1

l
(xi − xj)2), (7)

where the characteristic length-scale l > 0 and the signal variance
σ2
f are its hyper-parameters. They also have interesting meanings;
σ2
f represents the variability of the function, and l affects the model

complexity in that dimension. If l is small, a small change in the
input distance will cause a large change in the covariance of the out-
puts and vice versa. This leads to another important interpretation
of the characteristic length-scale, which is a measure of the impor-
tance or relevance of that dimension in the modeling. If l is small,
the corresponding dimension is relevant. When x is a vector, we can
compute the r = 1

l
values for each dimension, where, e.g., each

dimension could be a different feature, and then use them for fea-
ture selection. This is known as automatic relevance determination
(ARD) [18], and is used in supervised learning and automatic di-
mensionality reduction in unsupervised learning [24–26].

3. MODEL DESCRIPTION

Given two time series xt and yt, we would like to determine their
Granger causality. For each time series, as shown in Fig. 2, we can
model it as a function of time and the history values of the other time
series up to a certain length w, similar to the order of an AR model,
i.e.,

xt = fx(t, yt−w:t−1) + εx,t, (8)
yt = fy(t, xt−w:t−1) + εy,t, (9)

where εx,t ∼ N (0, σ2
x) and εy,t ∼ N (0, σ2

y) are independent and
additive white Gaussian noises, and the latent functions fx and fy
are governed by two GPs, respectively, i.e.,

fx ∼ GP(0, kx([t, yt−w:t−1], [t
′, y′t−w:t−1])),

fy ∼ GP(0, ky([t, xt−w:t−1], [t
′, x′t−w:t−1])),

(10)
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Fig. 1. Illustration of our model, where the arrows stand for flow of
information, and the normalized relevance weights indicate impor-
tance.

where the covariance functions kx and ky have the same form but
each has a different set of hyper-parameters, and [., .] denotes con-
catenation.

We propose to use the hyper-parameters of the GPs to deter-
mine Granger causality. In particular, we use the concept of rele-
vance weights, which we define by r = 1/l. We measure the rel-
evance of the history of yt when modeling xt with the maximum
value of the relevance weight of the input yt−w:t−1, i.e., rxy =
max(rxyt−1

, rxyt−2
, . . . , rxyt−w

), where w is the history length, and
rxyt−k

is the relevance weight of the y sample with lag k. We denote
the relevance weight of time, or equivalently xt, by rxx . It represents
the overall relevance of the history of xt when modelling xt. Finally,
we normalize rxx and rxy by their sum for proper comparison, i.e.,

Rxx =
rxx

rxx + rxy
, (11)

Rxy =
rxy

rxx + rxy
. (12)

Similarly, we can define ryy and ryx, and their normalized versionsRyy
and Ryx. The former metric measures the percentage of relevance of
the history of yt on yt and the latter, the percentage of relevance of a
window of history of xt on yt. An illustration of our model is shown
in Fig 1.

If the true direction of Granger causality is from xt to yt, then
the relevance of the past values of xt in modeling of yt will be
greater than the past values of yt in modeling xt. The reason is
simple: the cause occurs before the effect and the change in cause
entails a change in effect, and not the other way around. We note that
from a machine learning perspective, the cause and effect are often
viewed as a correlation only. Our interpretation of the values of Rxx,
Rxy ,Ryx, andRyy is similar to that of the VAR model, which is that the
information of Granger causality is encoded in the relevance weights
of the GP models. Therefore, with our approach, if the true Granger
causality is from xt to yt, this will be indicated as Ryx > Rxy , and
vice versa. Obviously, it is possible that the above analysis of the
two time series can show that there is cause and effect in both di-
rections. In principle, the determination of causality would require
comparisons of the obtained normalized relevances with thresholds.
Setting thresholds, however, is out of the scope of this paper.

If there is no Granger causality between the two time series, the
information from the history of the other time-series will not benefit
the modeling of the modeled time series. This will be encoded with
small values of both Ryx and Rxy . We note that since our method is
based on GP regression, if we have more prior knowledge about the
interaction or relationship between the time series, e.g., in forms of
superpositions and/or compositions, this can be included in the used
model. In that case, the hyper-parameters will encode even richer
information about the possible interactions. However, then the com-
parisons should be made more carefully, i.e., the relevance weights
should also be normalized by the importance of the corresponding
explanatory variables of the model.

The above discussion is based on the assumption that we have
properly selected the covariance function. If an inappropriate co-
variance function is used, the modeling and predictive performance
will severely be deteriorated, which will most likely lead to unre-
liable conclusions. The choice of covariance function and window
length of history w are model selection problems. Often this choice
depends on how much we know about the addressed problem and
the nature of the problem itself. One may use cross validation and
exploit model evidence and predictive performance to select good
covariance functions and window lengths. A tutorial on designing
of covariance functions and model selection in GPs can be found
in [18]. The window size w should not be very long, since this will
increase the number of hyper-parameters in the model. Empirically,
for determining Granger causality, we found that the model is robust
with different choices of w.

4. EXPERIMENTS AND RESULTS

4.1. Simulations

In this section, we first provide a description of a test for our method.
We simulated three pairs of time series (three cases), all shown in
Fig. 2. The complexity of relationships between the time series was
gradually increased as we moved from the first case to the third case.
For each case, we wanted to discover the Granger causality. We used
the RBF covariance function with ARD between two observed noisy
time series xt and yt, each of length T = 300. The ground truth
in the three simulations was that xt was a Granger cause of yt. For
Case 2 and Case 3, we included nonlinear mappings and function
composition to increase the complexity of the relationships. To re-
move bias, rather than using deterministic functions, we generated
the mappings by GPs.

4.1.1. Case 1: A delayed function with additive noise

This simple simulation represents the case where we have a time
series xt, which represents a sinusoid in noise, and another time
series yt, which is generated by the same, but delayed, sinusoid.
The time series yt also contained additive noise. More precisely, we
generated the time series according to the following model:

xt = sin(t+ 0.5) + εx,t, (13)
yt = 0.5 sin(t) + εy,t, (14)

where t was equally spaced in [0, 2π], and where the additive Gaus-
sian noises in xt and yt was white, and εx,t ∼ N (0, σ2

x) and εy,t ∼
N (0, σ2

y), respectively, with σ2
x = 1 and σ2

y = 4. The noises εx,t
and εy,t were independent of each other.

4.1.2. Case 2: A noisy function with a nonlinear mapping

With the second simulation we generated more complicated relation-
ship between the time series xt and yt. The time series xt was a su-
perposition of two deterministic signals in additive Gaussian noise.
The time series yt was composed of two parts, a function sampled
from a GP that used xt as an input and a deterministic function of
time. This time series also had zero mean additive Gaussian noise
which was independent from the noise of xt. The exact generative
model of the data is given by

xt = sin(t/10) + (t/50)2 + εx,t, (15)

yt = f(x) + sinc((t/40)2) + εy,t, (16)

f(x) ∼ GP(0, k(x, x′)), (17)
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Fig. 2. Simulated time series pairs in each simulation cases.

where the noise variances were σ2
x = 0.25 and σ2

y = 4.

4.1.3. Case 3: A delayed noisy function with two layers of function
composition

In this simulation, we further complicated the previous case by in-
troducing another layer of function composition and delay. We first
generated a time series xt as in Case 2, and we used its delayed
version as the input to a GP with an RBF covariance function. A
function was then sampled from this GP and used as the input to
another GP. This generative model is described by

xt = sin(t/10) + (t/50)2 + εx,t, (18)

yt = f2(f1(xt−2.5)) + sinc((t/40)2) + εy,t, (19)

f1(x) ∼ GP(0, k1(x, x′)), (20)

f2(x) ∼ GP(0, k2(x, x′)), (21)

where k1 and k2 are both RBF covariance functions but with differ-
ent sets of hyper-parameters. The noises, as before, were indepen-
dent and zero-mean Gaussian with variances σ2

x = 1 and σ2
y = 4.

4.1.4. Results

The results of our method are summarized in Table. 1. The method
correctly determined the causality in all three cases. We repeated the
experiment five times, and correct decisions were made in each of
them.

Table 1. Simulation Results
Rxx Rxy Ryy Ryx Granger causality

Case 1 0.9931 0.0069 0.1566 0.8434 xt Granger causes yt
Case 2 0.7914 0.2086 0.0008 0.9992 xt Granger causes yt
Case 3 0.4029 0.5971 0.3986 0.6014 xt Granger causes yt

4.2. Real data: CTG segment

In our experiments with real CTG data, we used data records from an
open access database that were acquired at the obstetrics ward of the
University Hospital in Brno, Czech Republic. A detailed description
of the database can be found in [27].

We applied the method on a real CTG segment of length 491
samples, as shown in Fig. 3, which corresponds to a duration of 2.04
minutes (the sampling rate for both FHR and UA signals was 4 Hz).
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Fig. 3. A segment of not-preprocessed (raw) FHR tracing and the
corresponding UA signals.

Table 2. Granger causality in CTG

RFHR
FHR RFHR

UA RUA
UA RUA

FHR

CTG signal 0.5090 0.4910 0.7917 0.2083

We used the RBF covariance function with a window size of w =
4. The results are shown in Table 2. The values of the normalized
relevance weights indicate that the UA is a Granger cause of FHR.
This agrees with a recent clinical study [23].

Another interpretation of the second principle of Granger causal-
ity is that if the UA Granger-causes the FHR, then past values of UA
should contain information that helps in predicting future values of
the FHR. With this information, the predictive performance of the
method should be better than that of using information from past
values of FHR alone. This is consistent with our observation in [19].
There we showed that adopting information from UA signals helps
in recovering missing samples of FHR tracings.

We also used deep Gaussian processes [28] to see if FHR and
UA signals have a common manifold. The results indicate that they
cannot be generated from a common manifold, i.e., the FHR and
UA encode different information about fetal well-being. This is also
consistent with our observations in [29], where the performance of
classification of FHR can be improved using features from UA.

5. CONCLUSIONS

In this paper, we proposed a Gaussian processes-based method for
detecting Granger causality. We showed that the interaction or causal
information can be extracted from the hyperparameters of the Gaus-
sian processes. We tested our method on both simulated data and real
CTG recordings and found the results very promising. Although we
used bivariate time series, this methodology can be easily extended
to more than two time series. Furthermore, if we have additional
prior knowledge about the time series and their interactions, it can
be easily injected in the GP framework. After applying our method
on real CTG recording, we found that uterine activity is a Granger
cause of fetal heart rate, which agrees with recent clinical studies.

2855



6. REFERENCES

[1] M. Eichler, “Causal inference in time series analysis,” Causal-
ity: Statistical perspectives and applications, pp. 327–354,
2012.

[2] P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and
B. Schölkopf, “Nonlinear causal discovery with additive noise
models,” in Advances in neural information processing sys-
tems, 2009, pp. 689–696.

[3] L. Barnett, A. B. Barrett, and A. K. Seth, “Granger causal-
ity and transfer entropy are equivalent for Gaussian variables,”
Physical review letters, vol. 103, no. 23, p. 238701, 2009.

[4] P. Spirtes and K. Zhang, “Causal discovery and inference: con-
cepts and recent methodological advances,” in Applied infor-
matics, vol. 3, no. 1. SpringerOpen, 2016, p. 3.

[5] M. Eichler and V. Didelez, “On Granger causality and the ef-
fect of interventions in time series,” Lifetime data analysis,
vol. 16, no. 1, pp. 3–32, 2010.

[6] C. Berzuini, P. Dawid, and L. Bernardinell, Causality: Statisti-
cal perspectives and applications. John Wiley & Sons, 2012.

[7] H. White and X. Lu, “Granger causality and dynamic structural
systems,” Journal of Financial Econometrics, vol. 8, no. 2, pp.
193–243, 2010.

[8] C. W. Granger, “Investigating causal relations by econometric
models and cross-spectral methods,” Econometrica: Journal of
the Econometric Society, pp. 424–438, 1969.

[9] ——, “Testing for causality: a personal viewpoint,” Journal of
Economic Dynamics and control, vol. 2, pp. 329–352, 1980.

[10] M. Eichler, “Causal inference with multiple time series: princi-
ples and problems,” Phil. Trans. R. Soc. A, vol. 371, no. 1997,
p. 20110613, 2013.

[11] Y. Chikahara and A. Fujino, “Causal inference in time series
via supervised learning.” in IJCAI, 2018, pp. 2042–2048.

[12] P.-O. Amblard, O. J. Michel, C. Richard, and P. Honeine,
“A Gaussian process regression approach for testing Granger
causality between time series data,” in Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Confer-
ence on. IEEE, 2012, pp. 3357–3360.

[13] D. Ayres-de Campos, C. Y. Spong, E. Chandraharan,
and F. I. F. M. E. C. Panel, “FIGO consensus guide-
lines on intrapartum fetal monitoring: Cardiotocogra-
phy,” International Journal of Gynecology & Obstetrics,
vol. 131, no. 1, pp. 13–24, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.ijgo.2015.06.020

[14] G. A. Macones, G. D. Hankins, C. Y. Spong, J. Hauth, and
T. Moore, “The 2008 National Institute of Child Health and
Human Development workshop report on electronic fetal mon-
itoring: Update on definitions, interpretation, and research
guidelines,” Journal of Obstetric, Gynecologic, & Neonatal
Nursing, vol. 37, no. 5, pp. 510–515, 2008.

[15] S. Dash, J. G. Quirk, and P. M. Djurić, “Learning dependencies
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