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ABSTRACT

Whereas previous post-processing approaches for increasing the
fairness of predictions of biased classifiers address only group fair-
ness, we propose a method for increasing both individual and group
fairness. Our novel framework includes an individual bias detector
used to prioritize data samples in a bias mitigation algorithm aiming
to improve the group fairness measure of disparate impact. We show
superior performance to previous work in the combination of classi-
fication accuracy, individual fairness and group fairness on several
real-world datasets in applications such as credit, employment, and
criminal justice.

Index Terms— Classification, discrimination, algorithmic fair-
ness, signal detection

1. INTRODUCTION

Fairness, non-discrimination, and unwanted bias have always been
concerns in human decision making [1], but are increasingly in the
limelight because historical human decisions are now being used as
training data for machine learning models in high stakes applications
such as employment, credit, and criminal justice [2]. Without bias
mitigation, models trained on such decisions perpetuate and scale
human biases and are thereby unsafe and untrustworthy [3, 4]. The
last couple of years have seen a surge in papers on algorithmic fair-
ness in the machine learning and data mining literature, with basic
principles defined using detection, estimation theory and informa-
tion theory [5, 6].

There are two main notions of fairness in decision making:
group fairness and individual fairness. Group fairness, in its broad-
est sense, partitions a population into groups defined by protected
attributes (such as gender, caste, or religion) and seeks for some sta-
tistical measure to be equal across groups. There are many different
group fairness notions involving different statistical measures, one
such notion being disparate impact [7]. Individual fairness, in its
broadest sense, seeks for similar individuals to be treated similarly.
Checking for group fairness is a fairly straightforward computation
of statistical metrics [8], but checking for individual fairness is more
computationally involved when there are many protected attributes
with many values and scoring samples using a model is expensive
[9, 10]. Unified metrics for both group and individual fairness have
recently been proposed [11] based on inequality indices [12].

Machine learning pipelines contain three possible points of in-
tervention to mitigate unwanted bias: the training data, the learn-
ing procedure, and the output predictions, with three corresponding
classes of bias mitigation algorithms: pre-processing, in-processing,

and post-processing [13]. Advantages of post-processing algorithms
are that they do not require access to the training process and are
thus suitable for run-time environments. Moreover, post-processing
algorithms operate in a black-box fashion, meaning that they do not
need access to the internals of models, their derivatives, etc., and are
therefore applicable to any machine learning model (or amalgama-
tion of models) [14].

The vast majority of bias mitigation algorithms address group
fairness, but a few address individual fairness [15, 16]. Some pre-
processing algorithms address both group and individual fairness
[17, 18, 6], but to the best of our knowledge, all existing post-
processing algorithms are only for group fairness [14, 19, 20, 21].
Our main contribution in this paper is to propose a post-processing
bias mitigation algorithm that considers both group and individual
fairness. Moreover, unlike the previous work, our proposal does not
require any ground truth class labels in the validation samples while
training the bias mitigation algorithm.

The general methodology of post-processing algorithms is to
take a subset of samples and change their predicted labels appro-
priately to meet a group fairness requirement. An interesting ob-
servation about post-processing is that any sample can be altered to
achieve group fairness requirements because the metrics are expec-
tations. The papers [19, 20] choose the samples randomly, whereas
[14] chooses the most uncertain samples (the ones in the reject op-
tion band [22, 23]), capturing the human intuition to give the ben-
efit of the doubt to unprivileged groups. In the method we propose
herein, we choose samples that have or are likely to have individual
fairness issues and in this way are able to address both group and
individual fairness together.

The starting point for our proposed approach is the individual
bias detector of [10], which finds samples whose model prediction
changes when the protected attributes change, leaving all other fea-
tures constant. Despite a large set of efficiencies enacted in the al-
gorithm, it is still computationally expensive. To overcome the lim-
itation of not being able to run the detector continually, we check
for individual fairness on a small set of points and generalize from
them by training a classifier that is applied to new samples. The sam-
ples with likely individual bias are the ones considered for a change
of predicted label. By doing so, we modify the idea of [14] from
focusing on uncertainty to focusing on individual bias.

Our empirical results are promising. Compared to the state-of-
the-art algorithms of [19] and [14], we have superior performance on
the combination of classification accuracy, individual fairness, and
group fairness in the preponderance of six different real-world clas-
sification tasks requiring non-discrimination. The results show very
little reduction in classification accuracy with much improvement in
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individual and group fairness measures.
The remainder of the paper is organized as follows. We first pro-

vide background on individual and group fairness definitions and de-
tectors in Sec. 2. Next, in Sec. 3, we propose a new post-processing
bias mitigation algorithm that accounts for both individual and group
fairness. In Sec. 4, we provide empirical results on several real-world
datasets including comparisons to [14, 19]. Finally, we conclude the
paper in Sec. 5.

2. INDIVIDUAL AND GROUP FAIRNESS

In this section, we introduce notation, provide working definitions
of individual and group fairness, and detail methods for detecting
individual bias and mitigating group bias.

Consider a supervised classification problem with features
X ∈ X , categorical protected attributes D ∈ D, and cate-
gorical labels Y ∈ Y . We are given a set of training samples
{(x1,d1, y1), . . . , (xn,dn, yn)} and would like to learn a classifier
ŷ : X × D → Y . For ease of exposition, we will only consider
a scalar binary protected attribute, i.e. D = {0, 1}, and a binary
classification problem, i.e. Y = {0, 1}.1 The value d = 1 is set to
correspond to the privileged group (e.g. whites in the United States
in criminal justice applications) and d = 0 to unprivileged group
(e.g. blacks). The value y = 1 is set to correspond to a favorable
outcome (e.g. receiving a loan or not being arrested) and y = 0 to
an unfavorable outcome. Based on the context, we may also deal
with probabilistic binary classifiers with continuous output scores
ŷS ∈ [0, 1] that are thresholded to {0, 1}.

One definition of individual bias is as follows. Sample i has in-
dividual bias if ŷ(xi, d = 0) 6= ŷ(xi, d = 1). Let bi = I[ŷ(xi, d =
0) 6= ŷ(xi, d = 1)], where I[·] is an indicator function. The indi-
vidual bias score, bS,i = ŷS(xi, d = 1) − ŷS(xi, d = 0), is a soft
version of bi. To compute an individual bias summary statistic, we
take the average of bi across test samples.

One notion of group fairness known as disparate impact is de-
fined as follows. There is disparate impact if

E[ŷ(X, D) | D = 0]

E[ŷ(X, D) | D = 1]
(1)

is less than 1− ε or greater than (1− ε)−1, where a common value
of ε is 0.2.

2.1. Test Generation for Individual Bias Detection

There are two distinct problems in individual bias detection: first,
determining whether there are any cases of individual bias, and sec-
ond, determining the individual bias status of all samples. In our
earlier work [10], we presented a technique for the first problem that
systematically explores the decision space of any black box classi-
fier to generate test samples that have an enhanced chance of being
biased. The method uses two kinds of search: (a) a global search
which explores the decision space such that diverse areas are cov-
ered, and (b) a local search which generates test cases by intelli-
gently perturbing the values of non-protected features of an already
found individually-biased sample. The key idea is to use dynamic
symbolic execution, an existing systematic test case generation tech-
nique for programs that generates search constraints by negating the
constraints in a program path and uses a constraint solver to find

1In many realistic settings, these simplifications do not hold, which moti-
vate the individual bias detector component described in Sec. 3.1.

new search paths [24]. This algorithm is useful in solving the sec-
ond of the distinct problems from a computational perspective when
used on a batch of samples in settings involving a large number of
attributes and attribute values.

2.2. Post-Processing to Achieve Group Fairness

To achieve acceptable group fairness, various post-processing meth-
ods may be applied to change the label outputs of the classifier ŷi to
other labels y̌i ∈ Y . The reject option classification (ROC) method
of [14] considers uncertain samples with |ŷS − 0.5| < θ (assuming
0.5 is the classification threshold) for some margin parameter θ and
assigns y̌i = 1 for samples with di = 0 and assigns y̌i = 0 for sam-
ples with di = 1. For certain samples outside the so-called reject
option band, y̌i = ŷi. The θ value may be optimized to achieve the
requirement on disparate impact.

The algorithm proposed by [19], equalized odds post-processing
(EOP), is targeted to a different group fairness measure: equalized
odds rather than disparate impact. Perfect equalized odds requires
the privileged and unprivileged groups to have the same false neg-
ative rate and same false positive rate. The algorithm solves an op-
timization problem to find probabilities with which to assign y̌1 =
1− ŷi. There are four such probabilities for the following four com-
binations: (di = 0, ŷ = 0), (di = 0, ŷ = 1), (di = 1, ŷ = 0),
and (di = 1, ŷ = 1). With these probabilities, the individual
points whose prediction is flipped is a random draw. The methods of
[20, 21] are refinements of [19] and share the key characteristics.

3. PROPOSED ALGORITHM

The new fairness post-processing algorithm we propose is inspired
by and not radically different from [14] in form. The key observation
in post-processing for group fairness metrics like disparate impact is
that since they are defined as expectations, the individual samples
are exchangeable. Kamiran et al. [14] elect to change values of ŷi
to y̌i in a reject option band to conform to one type of human sensi-
bility, but the same effect on disparate impact can be achieved using
the same numbers of samples from elsewhere in X . And that is pre-
cisely what we propose: elect samples from parts of X that likely
have individual bias. In this section, we first describe individual bias
detection and then how we wrap that in a post-processing bias miti-
gation algorithm.

3.1. Individual Bias Detector

Consider a classifier ŷ already trained on a training dataset partition.
We can evaluate the individual bias definition provided in Sec. 2 on
a validation partition that has no labels to go alongside. Some of
these validation samples will have individual bias and some will not.
Under an assumption of some coherence or smoothness of individ-
ual bias in X , we can learn a classifier or detector for individual
bias from this validation set that will generalize to unseen samples
whose individual bias is unknown. One may use any classification
or anomaly detection algorithm here that provides score outputs. We
use logistic regression in the empirical results.

Formally, by perturbing the dj of validation set samples (xj , dj),
j = 1, . . . ,m, that belong to the unprivileged group (dj = 0), we
obtain individual bias scores bS,j . We construct a further dataset
{(x1, β1), . . . , (xm, βm)}, and use it to train an individual bias
detector b̂(·). βj is 1 for the samples that have the highest individual
bias scores, and 0 for the rest. This assignment is determined by a
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threshold τ on the individual bias scores chosen based on the dis-
parate impact constraint on the entire validation set. This is similar
to the ROC algorithm where the margin parameter is adjusted based
on disparate impact requirements.

One may argue that a trained individual bias detector is unnec-
essary and one should simply compute bi for all samples as they
come at run-time because doing so only involves scoring using the
black-box classifier model. This may be true, but with the following
caveats. Firstly, in the exposition of the paper, we have assumed di
to be scalar and binary, when in many instances it is not. Therefore,
computing bi may require several model evaluations which could be
prohibitive, especially in the industrial usage we imagine in which
each sample that is scored costs a certain amount of money to be paid
by the entity deploying the model and remediating the bias. Sec-
ondly, we compute the binary βj values based on the group fairness
constraint, which ensures that only examples with highest individual
bias scores are considered for debiasing, and there is no overcom-
pensation. This level of control is not possible if we consider all
examples with bi = 1 to be equally biased.

3.2. Overall Algorithm

Once we have the individual bias detector b̂ trained on the validation
set, the bias mitigation algorithm applied in run-time to test samples
is as follows. Each sample from the unprivileged group (di = 0) is
tested for individual bias and if it is likely to have individual bias,
i.e., b̂i = 1, then this sample is assigned the outcome it would have
received if it were in the privileged group, i.e., y̌i = ŷ(xk, 1). To
encode a human sensibility similar to ROC, all other samples are left
unchanged, including samples from the privileged group.

The proposed algorithm is summarized below:

Algorithm 1 Individual+Group Debiasing (IGD) Post-Processing
Given classifier ŷ trained on training set {(xi, di, yi)}, and
Given validation set {xj | dj = 0}, compute individual bias
scores {bS,j | dj = 0}.
if bS,j > τ then
βj ← 1

else
βj ← 0

end if
Construct auxiliary dataset {(xj , βj) | dj = 0}.
Train individual bias detector b̂ on auxiliary dataset.
for all run-time test samples (xk, dk) do
ŷk ← ŷ(xk, dk)
if dk == 0 then
b̂k ← b̂(xk)

if b̂k == 1 then
y̌k ← ŷ(xk, 1)

else
y̌k ← ŷk

end if
else
y̌k ← ŷk

end if
end for

4. EMPIRICAL RESULTS

We evaluate our proposed algorithm on three standard datasets: UCI
Adult (an income dataset based on a 1994 US Census database;
45,222 samples; favorable outcome: income greater than $50,000;
protected attributes: sex, race), UCI Statlog German Credit (a credit
scoring dataset; 1,000 samples; favorable outcome: low risk; pro-
tected attributes: sex, age), and ProPublica COMPAS (a prison re-
cidivism dataset; 6,167 samples. favorable outcome: does not re-
offend; protected attributes: sex, race). Each of the three datasets
has two binary protected attributes that we consider as two differ-
ent problems, yielding six problems overall. We compare our pro-
posed individual+group debiasing (IGD) algorithm with ROC [14]
and EOP [19] using the implementations of ROC and EOP provided
in the AI Fairness 360 toolkit [25].

We process and load each dataset using the AI Fairness 360
toolkit and randomly divide it into 60% training, 20% validation and
20% testing partitions. We conduct experiments with 25 such ran-
dom partitions of the datasets, allowing us to provide error bars in
the empirical results that follow. Using the training partition, we fit
both `2-regularized logistic regression and random forests as black-
box classifiers. For random forests, we set the number of trees to
100 and the minimum samples per leaf node to 20.

The parameters of all three bias mitigation approaches are opti-
mized on the validation partition of the dataset. Both the ROC and
the EOP approaches require ground truth class labels in the valida-
tion set, whereas the proposed IGD approach, being a pure run-time
method, does not. ROC and IGD are optimized to achieve disparate
impact in the range (0.8, 1.25), i.e., ε = 0.2. EOP, being designed
for equalized odds rather than disparate impact, cannot be optimized
for ranges of disparate impact.

In the subsections that follow, we first demonstrate the efficacy
of the individual bias detector used in the proposed IGD algorithm
and then compare the three algorithms for classification accuracy,
disparate impact, and individual fairness.

4.1. Validation Results on Individual Bias Generalization

We verify the generalization performance of the individual bias de-
tector on unseen test data. Since the individual bias detector is used
only on unprivileged group samples (d = 0), its performance mea-
sure is only computed for this subset. The ground truth labels for
the bias detector are obtained by actually computing the individual
bias scores (bS,k) for all unprivileged group samples in the test data,
and identifying the ground truth bias labels (βk) based on the dis-
parate impact constraint. These labels are compared with the labels
predicted by the bias detector (b̂k), and the balanced classification
accuracy is computed.

This performance of the bias detector is shown in Fig. 1 for
all dataset and protected attribute combinations when the black-box
classifier is logistic regression. All accuracy values are more than
0.85, which illustrates its clear effectiveness for the purpose at hand.
The detector performs similarly when the black-box classifier is ran-
dom forests, with a minimum accuracy of approximately 0.80.

4.2. Fairness Comparisons

We use three measures for comparing EOP, ROC, and IGD: (a) in-
dividual bias, (b) disparate impact, and (c) balanced classification
accuracy. These measures are computed using the post-processed
predictions y̌. The individual bias measure is the summary statis-
tic discussed in Sec. 2, the disparate impact measure is defined in
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Fig. 1. Balanced accuracy of the bias detector when the black box
classifier is a Logistic Regression model. The bar shows the mean
accuracy, and the vertical lines show the extent of±1 standard devia-
tion. The dotted horizontal line shows the best possible performance.

(1), and balanced classification accuracy is the mean of true positive
and true negative rates obtained for the predictions y̌ with respect
to the true labels y. We also obtain these measures for the original
(Orig.) predictions ŷ. As shown in Fig. 2, Fig. 3, and Fig. 4, the
proposed IGD approach is the only one that consistently improves
both fairness measures while keeping the accuracy close to that of
the original classifier. All results are show for logistic regression
as the black-box classifier, but similar results are also observed for
random forests (omitted due to space constraints).

Fig. 2. Individual bias of the original model and the compared post-
processing algorithms. The bar shows the mean value, and the ver-
tical lines show the extent of ±1 standard deviation. The dotted
horizontal line shows the ideal fair value (0.0).

In individual bias, the proposed IGD method performs the best
for the German and COMPAS datasets. The ROC method performs
the best for the Adult dataset, at the expense of reducing the bal-
anced accuracy. Sometimes the EOP and ROC methods increase
the individual bias, which is never the case with IGD. The proposed
IGD method also consistently improves disparate impact over the
original predictions, although outperformed by the ROC method in
five out of six cases. The strong performance of the ROC approach is
likely because it does not also optimize for individual bias. The EOP
method performs poorly on disparate impact, likely because it was
designed to equalize odds, which may or may not always result in

Fig. 3. Disparate impact of the original model and the compared
post-processing algorithms. The bar shows the mean value, and the
vertical lines show the extent of ±1 standard deviation. The dotted
horizontal line shows the ideal fair value (1.0).

Fig. 4. Balanced classification accuracy of the original model and
the compared post-processing algorithms. The bar shows the mean
value, and the vertical lines show the extent of ±1 standard devia-
tion. The dotted horizontal line is the best possible accuracy (1.0).

improved disparate impact [26]. The proposed IGD method is also
the best in preserving the balanced classifier accuracy compared to
the original predictions even though no ground truth labels are used
in the validation partition.

5. CONCLUSION

Algorithmic fairness is an important topic for business and society,
and developing new bias mitigation algorithms that address as many
facets of fairness as possible is critical. In this paper, we have devel-
oped a new post-processing algorithm that targets samples with indi-
vidual bias for remediation in order to improve both individual and
group fairness metrics and shown that it does so empirically on sev-
eral real-world datasets without much loss in classification accuracy.
From our experience, the machine learning industry is moving to-
wards paradigms in which there will be a separation between model
building and model deployment. This will include a limited ability
for deployers to gain access to the internals of pre-trained models.
Therefore, post-processing algorithms, especially ones that can treat
a classifier as a complete black-box are necessary. In comparison to
previous work, our proposed algorithm not only tackles both individ-
ual and group fairness, but also is a pure run-time approach because
it does not require ground truth class labels for the validation set.
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