
SEMI-SUPERVISED TRAINING FOR END-TO-END MODELS VIA WEAK DISTILLATION

Bo Li, Tara N. Sainath, Ruoming Pang, Zelin Wu

Google LLC, USA
{boboli,tsainath,rpang,zelinwu}@google.com

ABSTRACT

End-to-end (E2E) models are a promising research direction in
speech recognition, as the single all-neural E2E system offers a
much simpler and more compact solution compared to a conven-
tional model, which has a separate acoustic (AM), pronunciation
(PM) and language model (LM). However, it has been noted that
E2E models perform poorly on tail words and proper nouns, likely
because the end-to-end optimization requires joint audio-text pairs,
and does not take advantage of additional lexicons and large amounts
of text-only data used to train the LMs in conventional models.
There has been numerous efforts in training an RNN-LM on text-
only data and fusing it into the end-to-end model. In this work, we
contrast this approach to training the E2E model with audio-text
pairs generated from unsupervised speech data. To target the proper
noun issue specifically, we adopt a Part-of-Speech (POS) tagger to
filter the unsupervised data to use only those with proper nouns. We
show that training with filtered unsupervised-data provides up to a
13% relative reduction in word-error-rate (WER), and when used
in conjunction with a cold-fusion RNN-LM, up to a 17% relative
improvement.

Index Terms— semi-supervised training, sequence to sequence

1. INTRODUCTION

End-to-end models provide a simple yet effective way for automatic
speech recognition (ASR). Traditionally, an ASR system consists of
an AM, PM and LM, while end-to-end models fold these three com-
ponents into a single neural network that is jointly optimized. Lis-
ten, Attend and Spell (LAS) [1] is one such end-to-end model, that
has shown promising results compared to a strong conventional ASR
system [2]. However, while the LM in a conventional system can be
independently trained on a large amount of text-only data, training
an LAS model requires audio-text pairs, which are much more ex-
pensive to collect and much smaller in scale. Thus, LAS performs
poorly compared to conventional models in recognizing rare words
or phrases, such as song names, contacts, etc [2–4].

There have been many efforts to improve end-to-end model per-
formance using unpaired text data. One popular research direction
looks to integrate an external LM, trained on the text-only data, with
an end-to-end model. For example, [5] initializes the end-to-end
model with a pre-trained LM from text-only data and then jointly
optimizes the end-to-end model and the LM through mutli-task train-
ing. In addition, interpolating independently trained end-to-end and
LM models via shallow fusion has been explored, both for neural
machine translation [6] and ASR [4, 7]. Furthermore, integrating
an RNN-LM trained on text-only data jointly into the end-to-end
decoder has been explored, via both cold and deep fusion [3, 4, 8].
Overall leveraging text-only data has shown between 3% to 7% rel-
ative improvement in WER for ASR [3].

[9] explored backtranslation to improve machine translation
with monolingual training data. The authors found that this im-
proved the BLEU score by 2.8∼3.7. This idea has also been applied
to speech recognition [10], where synthetic audio generated from
unpaired text data was used to expand the audio-text pairs for train-
ing end-to-end models. While the use of TTS data gives dramatic
improvements on TTS test sets, degradation has been observed on
real test sets.

In addition, conventional ASR systems make use of unlabelled
audio data to improve performance. Confidence scores from an ex-
isting ASR system is commonly used to select unsupervised data for
training with more data [11–15]. For example, [16] selects unsuper-
vised speech data using a combination of the recognition word con-
fidence score and the MLP posteriogram-based phoneme occurrence
confidence for low resource languages. For the YouTube speech cap-
tion task [17], an “island of confidence” approach was developed to
largely increase the amount of training data to improve WER per-
formance. To our knowledge, there has not been any existing work
using unsupervised speech data for end-to-end speech recognition.

The goal of this work is to investigate using unsupervised speech
data for improving the end-to-end model accuracy. We place a spe-
cific emphasis on improving performance in rare words and proper
nouns, such as contacts, song names and app names, which is very
important for contextual biasing [18], an important component of
any production-level ASR system. In this work, we propose to dis-
till information captured by a conventional ASR system’s output hy-
potheses to our LAS model. Specifically, we use the top hypothe-
sis generated by a full-stack conventional production ASR system,
which includes contextual-biasing, as the transcript truth to train our
LAS model on the unsupervised speech data. This is referred to
as weak distillation, a simplified sequence-level knowledge distilla-
tion [19, 20]. We also experiment different ways of using these un-
supervised data. Most importantly, to ensure the training is targeted
for proper noun cases, we adopt a POS tagger to identify utterances
that contain proper nouns and use only those data.

We report results across 5 test sets, which include a generic
Voice Search test set and 4 different test sets targeting at rare words.
We find that the proposed weak distillation using unsupervised data
with proper nouns is the most effective method. It reduces the su-
pervised LAS model’s WER by 4%-12% relatively, while with cold
fusion we obtain 2%-6% relative WER reduction. When combin-
ing these two approaches to leverage both speech-only and text-only
data, we achieve a relative 7%-13% WER reduction.

2. SEMI-SUPERVISED TRAINING

Training an all-neural E2E system such as LAS requires audio-text
pairs to learn jointly an AM, PM and LM. While this joint training
allows for potentially better optimization it also restricts to the use
of paired audio-text data, resulting in E2E model performing poorly
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on rare words and proper nouns. In this work, we explore techniques
of utilizing untranscribed speech data to improve the performance of
E2E models on these tail words.

2.1. Weak Distillation

Past work has shown that while LAS models outperform conven-
tional ASR systems on generic test sets, performance degrades on
tail words and proper nouns. A conventional ASR system includes
a large hand-designed lexicon, a 1st and 2nd pass LM trained on a
trillion-word text corpora, and a contextual biasing mechanism that
boosts those tail words into top hypotheses. All of these contribute
to improved performance on tail words.

In this work, we leverage the strength of a conventional model to
fix the weakness of the E2E model. Specifically, we look to distill the
information captured in the conventional ASR’s output hypotheses
to the end-to-end model. We use Google’s Voice Search production
model [21] as the teacher and decode millions of unsupervised voice
search queries. The recognition hypotheses of the teacher model are
used as the training targets for the student E2E model. This can be
considered as simplified sequence distillation [19,20] and is referred
to as weak distillation in this work. This approach requires no extra
model parameters and is more preferable when the size of model is
critical on cases such as on-device applications.

2.2. LM On Text-Only Data

Recognition errors of the teacher model may cause mismatches be-
tween the audio and the target text transcript, thus causing issues
for E2E model training. This problem can be alleviated by training
with the text-only portion of the unsupervised data. A very com-
mon approach to utilize a large amount of text-only data is to train
an RNN-LM and then perform fusion with an E2E model [4]. There
have been numerous fusion approaches proposed in the literature [3].
Cold fusion [8] has been shown to be an effective strategy for Voice
Search. Unlike weak distillation, this approach brings in an extra LM
which increases the total number of model parameters. In this study
we compare cold fusion with aforementioned weak distillation.

2.3. Synthesizing Audio from Transcripts

Another way to address possible mismatches in unsupervised audio-
text pairs is to generate synthetic audio from the text hypotheses
using a single-speaker TTS engine with parallel WaveNet vocoder
[22]. This is similar to the “backtranslation” approach used in ma-
chine translation [9]. One potential problem with this approach is the
acoustic differences between real speech and synthetic audio, partic-
ularly the limited speaker characteristics and clean speaking style.
To address this concern, we compare backpropping the encoder and
decoder of the LAS model, versus just the decoder. The intuition
is that the encoder represents an AM and should be trained on re-
alistic conditions. However, the decoder is akin to the LM and can
be trained with less realistic conditions. Therefore, we explore if
backpropping the decoder only could perhaps address the unrealistic
audio concerns with TTS data.

2.4. Data Filtering

We have access to more than a billion unsupervised utterances. This
comes with an advantage that with more unsupervised data, our
model sees a much larger vocabulary during training. However,
more data comes at a cost of longer model training time.
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Fig. 1: The amount of unique words added to training by using the
unsupervised data.

Table 1: Details of test sets used for evaluation.

Test Set Size Source

Voice Search (VS) 15K Real
Apps 16K TTS
Songs 15K TTS
Contacts-TTS 15K TTS
Contacts-Real 5K Real

Therefore, we explore selecting a subset of data to train the LAS
model. Specifically, because our model does poorly on proper nouns,
we explore if filtering the unsupervised data to include these utter-
ances allows us to obtain quality improvements with unsupervised
data, with smaller training time compared to using all of the data.
The decision whether an utterance contains proper nouns is made by
running a Part-of-Speech (POS) tagger [23] on the text hypothesis.

3. EXPERIMENTS
3.1. Data Sets

Our experiments are conducted on a human transcribed supervised
training set and an unlabelled unsupervised training set. The su-
pervised training set consisting of 35 million English utterances
(∼ 27, 500 hours). These utterances are anonymized and hand-
transcribed, and are representative of Google’s voice search and
dictation traffic. These utterances are further artificially corrupted
using a room simulator [24], adding varying degrees of noise and
reverberation such that the overall SNR is between 0dB and 30dB,
with an average SNR of 12dB. The noise sources are from YouTube
and daily life noisy environmental recordings. For each utterance,
we generated 25 different noisy versions for training.

The unsupervised training set consists of 1 billion English ut-
terances. These utterances are randomly collected from Google’s
voice search traffic without human transcriptions. We constrain the
time frame during which those utterances are logged to be different
from the supervised training set. This ensures that the supervised
and unsupervised training sets do not overlap with each other. We
use the recognition hypotheses from Google’s voice search produc-
tion system [21] as the transcripts for the unsupervised data. We
lowercase all the transcripts and treat each non-empty character se-
quence as “words”, which may contain invalid words. The number
of “words” vs. the amount of unsupervised data is plotted in Fig. 1.
As the amount of unsupervised data increases, so does the number
of unique words. With more data, there are large number of numeric
words added into the training.

For evaluation, we test our models on 5 test sets, which are
detailed as follows. A summary of the test sets are given in Ta-
ble 1. The Voice Search test set contains queries from Google’s
voice search traffic that are collected from a time frame different
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from both the supervised and unsupervised training sets. This set
has a matched data distribution compared to the training data and
is used to ensure the performance on the matched domain does not
degrade when training with unsupervised data.

The Apps, Songs and Contacts-TTS test sets are artificially cre-
ated using the aforementioned TTS system. The synthesized sam-
ples are also corrupted with noise similarly to the way we corrupt
the training data. The Apps test set contains requests to talk with one
of many chat-bots such as “talk to trivia game”. The Songs test set
contains requests to play music such as “play rihanna music” and
the Contacts-TTS test set contains call requests such as “call demetri
mobile”. The Contacts-Real test set is similar to Contacts-TTS but
from Google’s voice search traffic.

3.2. Modeling

We use 80-dimensional log-Mel features, computed with a 25ms
window and shifted every 10ms. Similar to [21, 25], at each cur-
rent frame, these features are stacked with 3 consecutive frames to
the left and then down-sampled to a 30ms frame rate.

The experiments are conducted with the LAS [1] model, fol-
lowing the set-up outlined in [2]. Specifically, the encoder network
consists of 10 unidirectional long short-term memory (LSTM) [26]
layers, with each layer having 2, 048 hidden units followed by a 384
dimensional projection layer. After the 2nd layer of the encoder net-
work, we concatenate each frame with its adjacent left neighboring
frame and stride by 2 before passing them to the following layers.
This stacking layer further reduces the frame rate to 60ms. Layer
normalization [27] is adopted for encoder layers to stabilize the train-
ing. Additive attention [28] with 4 attention heads are used. The de-
coder network consists of 4 unidirectional LSTM layers with 2, 048
hidden units and output projection size of 384. The LAS model out-
puts a vocabulary of 16K word pieces. The models are trained with
label smoothing and cross-entropy loss using TensorFlow [29]. We
use 8 × 8 Tensor Processing Units (TPU) slices with global batch
size of 4,096 and train the models for around 200K steps.

4. RESULTS

4.1. Baselines
First the performance of the LAS model trained with only the super-
vised training data (denoted as B0) is presented in Table 2. We also
present the performance of the full stack conventional model [30] we
used as the teacher model for weak distillation. The teacher model
is a conventional context-dependent phoneme based low frame rate
acoustic model, a 4M word pronunciation lexicon and a 5-gram lan-
guage model. This model is referred to as B1. The teacher model
is trained using the same supervised training data. The table shows
that the LAS model outperforms the conventional model on most of
the test sets. However, the conventional model uses context informa-
tion in practice to prune the search space [18], which helps reduce
WER on sets with many proper nouns (songs, contacts, apps). The
performance of the teacher model with context biasing is denoted as
B2 in Table 2.

Table 2: WER performance (%) of baseline experiments.

Exp VS Apps Songs Contacts
TTS Real

B0 5.4 9.2 13.5 24.8 15.0

B1 6.8 9.0 13.1 26.0 16.8
B2 - - 2.2 3.7 6.3

4.2. Weak Distillation
To distill the knowledge encoded in the recognized hypotheses, we
start with training B0 on the 1 billion unsupervised data. We use the
hypotheses generated by B2 as the reference transcripts, regardless
of the errors in those transcripts. Training on 1 billion (1B) unsu-
pervised data for 450K steps (E0), we obtain good improvements
on all the TTS sets but see degradation for the Voice Search and
Contacts-Real. The wins on TTS sets mainly come from the more
word variations brought by the data, but the loss is most likely due
to the errors in decoded hypotheses. To reduce the degradation on
VS and Contacts-Real, we further fine-tune E0 with the supervised
data for 150K steps (E1). It improves over B0 on all the test sets.

Training with 1B data takes a long time. To understand whether
this amount of data is needed, we randomly down-sample the unsu-
pervised data to 500 million (500M) and 100 million (100M) respec-
tively. We train on the unsupervised data alone first (E2 and E4) and
then fine-tune them on the supervised data (E3 and E5). We are able
to get gains with both 100M and 500M unsupervised data across test
sets, but using 1B data offers slightly better performance.

Table 3: WER performance (%) of two-stage training with unsuper-
vised data.

Exp uns VS Apps Songs Contacts
Data TTS Real

B0 0 5.4 9.2 13.5 24.8 15.0

E0 1B 6.7 9.2 12.9 23.3 18.5
E1 5.0 8.9 12.9 23.9 14.5

E2 500M 6.8 9.5 13.3 23.6 19.4
E3 5.2 8.8 12.3 24.0 15.1

E4 100M 6.7 9.6 13.6 24.6 16.9
E5 5.2 8.7 12.9 24.1 14.7

4.3. Mixed training
Experiments in Table 3 showed that after training the LAS model
with unsupervised data, we needed to fine-tune the model with su-
pervised data again. To simplify the training procedure, we experi-
ment with mixing the supervised and unsupervised data together dur-
ing training. Specifically, whenever creating a batch of utterances for
training, we randomly select from the two training sets with a fixed
ratio. For example, with the mixing ratio of 8:2, a training batch
comes from the supervised data 80% of the time and from unsuper-
vised data 20% of the time. From the results in Table 4, mixing
the supervised and unsupervised data is an effective way of utilizing
the unsupervised data. Among the three different ratios, 8:2 gives
the best performance across board with marginal differences. When
comparing E8 to E1 we achieve much lower WERs on test sets with
more proper nouns (Apps, Songs, Contacts) although the gain on
Voice Search is smaller compared to E1.

4.4. Leveraging Text-Only Data
In this section, we compare different approaches of incorporating
the unsupervised data. For all experiments, we explore performance
with a randomly sampled 100M subset of the unsupervised data, for
fast experiment turn-around. E9 is trained exactly the same way as
E8 but with less unsupervised data. The results in Table 5 show that
with less unsupervised data we get slightly better performance on the
generic Voice Search test set but higher WERs on test sets with more
tail words. Next, we explore performance by synthesizing audio
from the unsupervised transcripts, where we use the aforementioned
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Table 4: WER performance (%) of mixed training with unsuper-
vised data. “Ratio” corresponds to the percentage of using super-
vised vs. unsupervised data.

Exp Ratio VS Apps Songs Contacts
TTS Real

B0 - 5.4 9.2 13.5 24.8 15.0
E1 - 5.0 8.9 12.9 23.9 14.5

E6 6:4 5.4 8.0 11.5 22.9 13.7
E7 7:3 5.3 7.8 11.3 22.9 13.7
E8 8:2 5.3 7.8 11.3 22.8 13.7

Table 5: WER performance (%) of using audio-only data vs. text-
only data.

Exp Info VS Apps Songs Contacts
TTS Real

B0 - 5.4 9.2 13.5 24.8 15.0
E9 8:2(100M) 5.2 8.2 11.9 23.6 13.8

E10 TTS(enc+dec) 5.2 3.1 5.2 14.2 14.5
E11 TTS(dec) 5.3 3.3 5.2 14.2 14.7

E12 LM fusion 5.1 9.0 12.7 24.1 14.7

TTS system that is used to create the rare word test sets. We replace
the unsupervised data used in E9 with this TTS training set and the
results are presented in Table 5 as E10. It achieves a large WER
reduction for all the TTS test sets but degrades the performance on
Contacts-Real. This huge error reduction on TTS sets mainly
comes from the matched acoustics between the added unsupervised
data and the test sets. To avoid the potential mismatched audio con-
ditions between real and synthetic data, we disable the update of the
encoder network parameters and only update the decoder network
of the LAS model during training. The results (E11) are similar
to E10 with slightly degradation on Apps. Despite the large error
reductions on TTS sets, we believe that the degradation on more re-
alistic test sets compared to E9 tells the real story. We hence prefer
E9 over E10 and E11.

Another way of utilizing the unsupervised data is to integrate an
LM into the LAS system. Specifically, we train an RNN-LM on the
supervised and 100M unsupervised data transcripts, and then inte-
grate it into the LAS model training using cold fusion [3, 8]. The
result (E12) shows 2%-6% relative WER reduction over the super-
vised baseline (B0), but the gain is much smaller compared to E9.

4.5. Filtering
In this section, we explore how to better utilize the unsupervised
data. First, instead of random selection (E9) of 100M unsupervised
utterances, we filter the unsupervised data to use only those with
proper nouns (E13 in Table 6) for training, as that allows us to se-
lect utterances where the LAS model does poorly. The selection is
done with a proper noun tagger [23,31,32]. We mix the 100M unsu-
pervised data focusing on proper nouns with the supervised training
data at the same 8:2 ratio for training. With the same amount of
data, training with the proper noun filtered speech gives us 6%-13%
relative WER reduction compared to the 4%-12% relative reduction
using random selection. Finally, we extend the filtering idea to the
entire 1B unsupervised training data, which leaves us with around
500M utterances with proper nouns. With more data (E14), we see
slightly gains on TTS sets but slightly degradation on VS. We then
combine the weak distillation with cold fusion (E15), which is much
better than using all the 1B data and it reduces the WER of the base-

Table 6: WER performance (%) of using proper noun filtered unsu-
pervised data.

Exp Info VS Apps Songs Contacts
TTS Real

B0 - 5.4 9.2 13.5 24.8 15.0
E8 1B random 5.3 7.8 11.3 22.8 13.7

E9 100M random 5.2 8.2 11.9 23.6 13.8
E13 100M filtered 5.1 8.0 12.0 22.8 13.6
E14 500M filtered 5.2 8.0 11.9 22.7 -

E15 E14 + fusion 5.0 7.7 11.2 21.9 13.2

Table 7: Comparisons of OOV rates (%), In-vocab (IV) error rates
(%), OOV error rates (%) and proper noun error rates (%) between
the baseline model (“B0”) and the best system (“E15”).

Analysis Exp VS Apps Songs Contacts
TTS Real

OOV Rates B0 2.3 0.6 0.9 2.5 1.9
E15 2.1 0.1 0.6 0.4 0.7

IV Errors B0 19.0 23.0 23.7 26.3 32.6
E15 17.3 19.4 19.6 23.8 28.6

OOV Errors B0 81.6 88.7 88.6 90.2 88.1
E15 78.2 73.1 74.8 72.0 79.3

Proper Noun B0 30.2 38.7 30.8 68.1 60.8
Errors E15 27.7 31.5 26.2 62.8 53.6

line system on all the four test sets by 6%-17% relatively.

4.6. Analysis
To understand the improvements brought by the unsupervised data,
we compare the two systems B0 and E15 in this section. B0 uses
only the supervised training data, while E15 uses additional unsu-
pervised training data. First, the use of unsupervised data reduces the
out-of-vocabulary (“OOV”) rates across all the test sets (row “OOV
Rates” in Table 7). Computing the errors on both in-vocab (“IV”)
words and OOV words (row “IV Errors” and row “OOV Errors” in
Table 7 respectively), the use of unsupervised data helps reduce er-
rors for both cases. For OOV words, there are still many cases not
fixed by E15 yet. Furthermore, proper nouns are the main reason
for OOV words, we compute the error rates on proper nouns only.
From row “Proper Noun Errors” in Table 7, similarly, E15 does bet-
ter than B0 but there are still room for improvement, which maybe
addressed by using more unsupervised data.

5. CONCLUSIONS

In this paper, we investigate the use of unsupervised speech data
to improve the performance of the LAS model on long tail words.
We use a conventional ASR system with contextual biasing as the
teacher model to generate text hypotheses as transcript truth for a
large amount of unsupervised data. We then mix these machine-
labeled data with human-labeled data to train an end-to-end LAS
model. To focus on LAS model’s weakness on rare words, we ap-
ply proper-noun-based filtering for the unsupervised data. With the
filtered data, experimental results have shown that up to 17% rela-
tive WER reduction could be achieved by introducing unsupervised
data. In future, we plan to investigate further filtering techniques to
improve training data efficiency and increase coverage on rare words
and proper nouns.
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