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ABSTRACT

In this paper, we propose an effective active learning query
strategy for an automatic speech recognition system with the
aim of reducing the training cost. Generally, training a deep
neural network with supervised learning requires a massive
amount of labeled data to obtain excellent performance. How-
ever, labeling data is tedious and costly manual work. Active
learning can solve this problem by choosing and only annotat-
ing informative instances, which presents better results even
with less transcribed data. In this approach it is vitally impor-
tant to accurately select informative samples. Based on the
preliminary experiment results that true gradient length has
the best performance in terms of measuring sample informa-
tiveness in ideal conditions, we propose utilizing both uncer-
tainty and the expected gradient length criterion to approx-
imate the true gradient length using a neural network. The
experiment results show that our proposed method is supe-
rior to the conventional individual criterion when applied to
a phoneme-based speech recognition system, and it has both
a faster convergence speed and the greatest loss reduction in
both clean and noisy conditions.

Index Terms— Active learning, deep learning, combined
query strategy, automatic speech recognition

1. INTRODUCTION

As a large amount of data can be collected through the Inter-
net deep learning-based approaches have rapidly grown for
many research and industrial fields such as image process-
ing, natural language processing and speech signal process-
ing. However, data cannot be directly used for training be-
cause most are unlabeled. Particularly for automatic speech
recognition (ASR), manually transcribing hundreds hours of
raw speech data individually is tedious and very costly.

Active learning that actively chooses informative and rep-
resentative training data has been proposed as a solution to re-
lieve the big training dataset issue. Generally, a deep learning
network is favorable for training with unseen or less-trained
data that causes larger gradients for backpropagation in the
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training stage. If labels exist for such data, this measurement
is called the true gradient length (TGL) [1].

Although TGL is the ideal method for active learning, it
cannot be used in practice because it still requires labeled
data. Instead, there are two alternative strategies that uti-
lize information uncertainty [1, 2] and the amount of model
change [3, 4]. Uncertainty represents the degree to which the
current model is not certain when attempting to recognize an
instance. The methods that belong to this strategy are the
least confidence method [5], the margin sampling method [6],
and the entropy-based method [7]. There has also been inter-
est in the query strategies that evaluate how much the model
changes given new input data. For example, the expected gra-
dient length (EGL) [8] was proposed to measure the variation
in gradients in the backpropagation process, which does not
require true labels. Beyond that, query-by-committee [9, 10]
and density-weighted methods [11, 12] have been proposed.
However, such conventional active learning remains insuffi-
cient to represent the information obtained by the TGL-based
strategy.

In this paper, we propose a novel active learning method,
in which we estimate the true gradient length with a deep
learning framework. Based on the analysis that EGL and
entropy-based methods provide different types of active learn-
ing knowledge, we utilize both features together in the frame-
work. In other words, the proposed method estimates the
true gradient length from two different active learning crite-
ria. The performance of the proposed active learning query
strategy is evaluated by implementing a phoneme recognition
system based on connectionist temporal classification (CTC)
[13] to compare its performance with conventional methods.
In our clean and noisy speech experiments, the proposed es-
timated TGL strategy shows better performance than conven-
tional single active learning methods.

This paper is organized as follows: Section 2 describes
the active learning strategies that are relevant to the proposed
method in detail, Section 3 introduces the proposed active
learning method that utilizes a deep learning framework,
Section 4 shows the experimental settings and evaluations to
prove the performance, and Section 5 concludes the paper.
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2. ACTIVE LEARNING

In this section, we describe the training process for two ac-
tive learning strategies: uncertainty-based and model change-
based methods.

2.1. Uncertainty-based Active Learning

The uncertainty-based approach is the simplest query strategy
that directly calculates the learning model’s posterior proba-
bility. The most prevalent uncertainty method for our work is
the following entropy-based active learning:

x∗en = argmax
x

[
−

J∑
j=1

p(yi = j|xi, θ)logp(yi = j|xi, θ)
]
.

(1)
The entropy-based method considers entropy between

output yi and all possible labels J with regard to input xi
and parameters θ. Well-trained data has small entropy when
stable, but the others can be treated as unseen or less-trained
data. Since other uncertainty-based methods such as the
least confidence and margin sampling methods only consider
the influence of one or two labels, they are inappropriate in
multi-class problems such as speech recognition or image
classification, where the label set is considerably large [1].
The entropy-based approach alleviates the deficiency by con-
sidering all possible class labels.

2.2. Model change-based Active Learning

The maximum model change claims to query the samples that
will lead to the biggest change in the existing model if the
true label is known, such as the true gradient length (TGL). A
measure of the change can be inferred by the gradient length
|| 5θ L(xi, yi; θ)||. However, the learning algorithm does not
know the ground truth annotation of y in advance in practical
applications, so it needs to calculate the expected value of the
gradient over all possible labels then pick the instances that
have the largest expected gradient length (EGL):

x∗egl = argmax
x

∑
i

Pθ(yi|x)|| 5θ L(DL ∪ (x∗, y∗i ))||. (2)

where 5θL(DL) is the gradient of the loss function L
with respect to the parameters θ and labeled data DL.
5θL(DL ∪ (x∗, y∗)) represents the new gradient derived by
adding a new training instance (x∗, y∗). || · || is the Euclidean
norm of each gradient vector. Note that the || 5θ L(DL)||
term is actually nearly zero, since L has converged at the pre-
vious training iteration. Thus, this term can be ignored and
the5θL(DL ∪ (x∗, y∗i )) is simplified to5θL((x∗, y∗i )) [1].

EGL could be expensive if the computational complexity
of the feature and label space are very large; for example,
speech recognition usually contains many phoneme labels.

Fig. 1: EGL rankings vs. entropy rankings

Fig. 2: Combining EGL and entropy to estimate TGL through
the neural network

3. PROPOSED METHOD

3.1. Combined query strategy

Huang et al. [14] claimed that the two strategies described in
the previous section tend to choose different data. Figure 1
depicts that EGL and entropy are not correlated. Since they
operate at disparate scales, the plot axes represent the nor-
malized rankings that correspond to their values. A plot close
to the diagonal implies that the two methods evaluate infor-
mativeness in very similar ways. EGL and entropy criteria
are uncorrelated, so we can conclude that EGL can identify
the unique aspects of informativeness that uncertainty-based
measurement cannot capture. Therefore, it is more power-
ful to use EGL and entropy in combination. To combine two
different criteria, the strength of each strategy should be ana-
lyzed or needs to be processed with reinforcement learning
or meta-learning [15, 16]. Since these approaches require
very complicated training processes with huge computational
complexity, its practical use is unfavorable. This work uses
a neural network to jointly combine the characteristics of the
two criteria to estimate TGL criterion which is better than the
other criteria [17, 18]. Before estimation, as each criterion
has a different dynamic range, all the criteria (i.e. EGL, en-
tropy and TGL) are converted into a percentile scale and fed
into the neural network to approximate TGL as demonstrated
in Figure 2.

3.2. Application on CTC-based ASR

The proposed method is applicable for any type of deep
learning-based system, but we apply it to the active learn-
ing for ASR trained using CTC-based phoneme recognition
system. CTC [13] is favorable because it does not require
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Fig. 3: The overall proposed active learning process

an accurate forced alignment process to determine phonetic
labels. Since CTC uses a decoding process that computes
possible graph and training loss, it is essential to modify the
calculation of EGL and entropy. Note that CTC has an extra
”blank” label to distinguish temporal label changes. Since
its probability is much higher than other labels, the ”blank”
label should be removed before calculating the total entropy
to avoid bringing any bias caused by the label. To reduce
the computational cost of EGL, it uses the most probable
top K labels obtained by the beam search decoding process.
Besides, it is favorable to consider the decoded path along
with their probabilities since the CTC-based model directly
generates the phoneme sequence.

x∗
′

egl = argmax
x

∑
i

|| 5θ {P (yi|x, θ)Lctc(yi|x, θ)}|| (3)

Equation (3) decides that the path probability is first mul-
tiplied with the decoding results and the gradient of this
weighted CTC loss function is then calculated.

The overall active learning process of the proposed
method is demonstrated in Figure 3. The ASR model is
pretrained by a labeled dataset. In this paper, we utilize
the bidirectional long short-term memory recurrent neural
network (BLSTM-RNN)-based structure. Next, the large
dataset including only unlabeled raw speech is fed into the
pretrained model. By utilizing active learning criteria such
as uncertainty, EGL, and our proposed approach, the most
valuable utterances are chosen and given to an oracle for
annotation. After labeling, the instances are merged into the
existing dataset to re-train the existing recognition model.
This process is repeated for several iterations until we obtain
a desirable ASR performance.

4. EXPERIMENTS

Here, the proposed method’s performance is compared to that
of conventional methods for ASR.

4.1. Experimental Settings

The speech recognition experiments include two settings op-
erated in clean and noisy environments. For the clean envi-

Table 1: Details of dataset configuration.

Dataset types Clean utt. Noise Noisy utt.
Pretraining 1,200 three types 3,000

Active learning pool 2,000 four types 10,000
TGL training 200 four types 600

Validation 200 four types 1,000
Evaluation 192 four types 1,000

ronment setting, experiments were performed with the TIMIT
corpus with 1,200, 2,000, 200, 200, and 192 utterances for
a small labeled dataset for pretraining, unlabeled data pool
for active learning, distinct speech data for TGL estimation,
validation set for ASR training, and evaluation set for ASR,
respectively. To perform experiments in noisy environment
setting, each dataset includes the same amount of utterances
as was used in the clean speech experiment, and four types of
noise from the CHiME3 dataset are used; bus, cafe, street, and
pedestrian. Pretraining utterances were mixed with bus, cafe,
and pedestrian noises at -5, 0, 5, and 10 dB signal-to-noise
ratio (SNR) levels in a uniformly random manner. The other
sets include all noise types with the same SNR levels. Noises
recorded in different conditions were used for the evaluation
set. Consequently, 3,000, 10,000, 600, 1,000, and 1,000 ut-
terances were generated for each set as described in Table 1.

For DNN-based ASR, a 40-dimensional Mel-filterbank
was extracted with a 25ms window and 10ms frame shift. Re-
lying on [19], the folded 39 phonetic labels were used instead
of the overall 64 phone labels. The phoneme-error-rate (PER)
shows how efficiently the network learns in active learning
strategies as an evaluation metric. The ASR neural network
consists of three hidden layers with 256 cells for a clean sim-
ulation and four hidden layers with 512 cells for noisy envi-
ronments. Model weights were initialized by Xavier initial-
ization and trained by an Adam optimizer that was trained to
the CTC training criterion. We reduced the computation by
using only the top 50 probable paths determined by the CTC
beam search decoding process to compute EGL.

Regarding the neural network for TGL estimation, since
the training data was a small set with few dimensions, a shal-
low structure consisting of two hidden layers with 10 nodes
with the ReLU activation function and sigmoid function for
outputs was used. It was trained with a mean-squared-error
(MSE) criterion to estimate the TGL.

4.2. Experiment Results

To shed light on how the TGL is superior to other query strate-
gies and demonstrate that our proposed method has a similar
performance to TGL, we compare TGL and estimated TGL
with EGL, entropy, and random selection methods.
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Fig. 4: PER results of clean speech ASR

4.2.1. Clean-speech experiments

In this experiment, we compared five active learning strate-
gies in the clean-speech recognition task. At every selection
phase, we chose a fixed number of samples; 400 utterances
from the unlabeled data pool.

Figure 4 represents each method’s PER. The results show
that all four active learning query strategies outperformed the
random selection method (baseline), and TGL significantly
reduced the error and had a much faster convergence speed
compared to the other three approaches. We also verified that
the training trend of the proposed method was similar to that
of TGL, which derives the lowest PER and requires less train-
ing time. Consequently, we confirm that integrating EGL and
entropy allows us to approximate TGL accurately and can be
utilized as an active learning query strategy.

4.2.2. Noisy-speech experiments

We verified the generalization performance of the proposed
active learning strategy by applying it to the noisy-speech
recognition system and evaluating the performance for each
noise type separately. The selection dataset for each noise
contains 2,500 utterances and each test set includes 250 utter-
ances. Due to the expansion of the noisy dataset, we chose
1,000 utterances at each iteration selection.

Figure 5 displays the PER curve of the whole evalua-
tion set. Similar to the results in the clean-speech condition,
active learning strategies outperformed the random selec-
tion method. TGL and the proposed estimated TGL method
show much faster training times and larger PER reductions.
Figure 6 depicts the selection ratio and PER reduction rate
for each noise type when the amount of selected data was
increased in the active learning process with the proposed
method. We can observe that for the first several iterations,
utterances from the street set were selected more often than
the other noise types because the street noise was not in-
cluded in the pretraining set. However, upon increasing the
street-mixed samples, the model adapted to the street noise
characteristics and the selected noise type amount gradually
decreased. Meanwhile, the PER reduction which shows er-
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Fig. 5: PER results of noisy speech ASR
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Fig. 6: Results at each retraining of the proposed method
(Up: number of selected data of each noise type, Down: PER
reduction compared to the last iteration)

ror variation compared to each previous step has the similar
variation tendency as the number of selections; it is steeper
initially and tends to become gentle.

5. CONCLUSION

In this paper, we proposed a novel active learning strategy to
effectively select informative samples from a large amount of
unlabeled data to reduce the manual annotation cost. Since
TGL gives more accurate expression of informativeness than
conventional active learning methods, our strategy estimates
TGL by combining the EGL and entropy-based uncertainty
approaches through a neural network. The experimental re-
sults via a phoneme recognition task confirmed the proposed
estimated TGL method’s efficacy, where it improved perfor-
mance with less transcribed data and reduced training time.
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