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ABSTRACT

Characterization of the representations learned in interme-
diate layers of deep networks can provide valuable insight
into the nature of a task and can guide the development of
well-tailored learning strategies. Here we study convolu-
tional neural network (CNN)-based acoustic models in the
context of automatic speech recognition. Adapting a method
proposed by [1], we measure the transferability of each layer
between English, Dutch and German to assess their language-
specificity. We observed three distinct regions of transferabil-
ity: (1) the first two layers were entirely transferable between
languages, (2) layers 2–8 were also highly transferable but
we found some evidence of language specificity, (3) the sub-
sequent fully connected layers were more language specific
but could be successfully finetuned to the target language.
To further probe the effect of weight freezing, we performed
follow-up experiments using freeze-training [2]. Our results
are consistent with the observation that CNNs converge ‘bot-
tom up’ during training and demonstrate the benefit of freeze
training, especially for transfer learning.

Index Terms— CNNs, acoustic modeling, interpretabil-
ity, transfer learning, language-specificity, freeze training

1. INTRODUCTION

The acoustic properties of speech vary across languages. This
is evidenced by the fact that monolingual acoustic models
(AMs) are the de facto standard in automatic speech recog-
nition (ASR), while multi-lingual AMs are an active area of
development [3, 4, 5, 6]. Requiring large amounts of training
data to build separate AMs for every language is a barrier to
successful ASR systems for low-resource languages. Ideally,
AMs would be designed to strategically leverage off-task data
as much as possible. AMs often take the form of a deep net-
work which learns to map from acoustic features to context-
dependent phones in a language-specific phone set. It is not
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clear how exactly this transformation is performed or what
is represented in the intermediate layers of such networks.
Better characterization of the intermediate representations of
AMs may help to guide data-efficient training procedures.

Similar characterizations of networks trained on visual
tasks have inspired new transfer learning procedures. For ex-
ample, [1] characterized the task specificity at each layer of a
network trained on ImageNet using transferability as a proxy
for task-specificity. This characterization motivated Adaptive
Transfer Networks [7] where parts of a network are trained
on the source domain while other parts of the network are
finetuned or adapted to the target domain, preserving the lim-
ited target data for learning highly task-specific parameters.
Similar adaptive transfer learning procedures may also prove
to be useful for building AMs for low-resource (data-poor)
languages. A necessary first step is to characterize the shape
of the transition from task-general to task-specific representa-
tions through the layers of deep network-based AMs.

Much of the previous work on characterizing intermedi-
ate layers of deep networks has focused on relatively solvable
tasks in the visual domain (e.g. hand written digit recogni-
tion, visual object recognition) [8]. Few studies have char-
acterized the intermediate representations of networks trained
on acoustic tasks [9, 10, 11], which, in practice, are not al-
ways trained long enough to converge completely (test error
still slowly decreasing at the end of training) due to the long
training time required. It is not clear to what extent existing
methods developed to probe networks trained on visual tasks
will be applicable and useful to study networks that may be
underfitting on difficult acoustic tasks.

Here we studied convolutional neural networks (CNNs)
used for ASR systems. We characterized the language-
specificity of each layer across languages using an approach
inspired by [1]. Subsets of a network previously trained on
one language were ‘implanted’ into another network which
was subsequently trained on a second language. The effect of
the implant on performance indicated the language-specificity
of the features in the implant. Our main contribution is the
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Table 1: Speech Data

English German Dutch

Hours 82h:44m 67h:42m 63h:46m
Utterances 87906 62294 95350
Phoneset size 49 49 48

characterization of the language-specificity of intermediate
layers of CNN-based acoustic models. We also demonstrate
the adaptation of an analysis method originally designed to
probe visual networks to study networks in an underfitting
regime on a phone classification task. Additionally, follow
up experiments explore the role of weight freezing in transfer
learning.

2. EXPERIMENTS

The datasets for this experiment consisted of German, Dutch
and American English speech, recorded in similar environ-
ments, with corresponding text transcriptions. We chose these
languages because we expected a large degree of transferabil-
ity based on their phonetic similarity. Logarithmic Mel filter
bank features were calculated, creating a 45-dimensional fea-
ture vector for every 10ms of audio (spectrograms). Each ob-
servation was associated with one of 9000 context-dependent
phone classes (language-specific). A summary of the speech
data can be found in Table 1.

2.1. Baseline models

For each language, a CNN consisting of nine convolutional
layers followed by three fully connected layers was trained to
recognize context-dependent phones. The architecture was as
follows, where triplets specify the filter size and number of
feature maps in each convolutional layer and the singletons
specify how many units in each fully connected layer: (7, 7,
1024), (3, 3, 256), (3, 3, 256), (3, 3, 128), (3, 3, 128), (3, 3,
128), (3, 3, 64), (3, 3, 64), (3, 3, 64), (600), (190), (9000).
This resulted in a total of approximately 7.2 million param-
eters. All networks were trained using the ADAM optimizer
[12] as implemented in Tensorflow [13] with a minibatch size
of 256, a starting learning rate of 10e−5 and rectified linear
units. Approximately 98% of the data was used for training
and the remaining 2% for testing. All model parameters were
replicated on four GPUs. Different minibatches were given to
each GPU and their gradients were averaged to calculate up-
dates. As a balance between training time and accuracy, each
network was trained for a fixed period of 100 epochs (which
took approximately two weeks).

2.2. Experimental setup

The subsequent experimental setup was similar to that de-
scribed in [1]. Several ‘network surgeries‘ were performed.
The first n layers of a network trained on Language A were
implanted into a new network of identical architecture where
the layers after layer n were randomly initialized. This
‘chimera’ network was further trained in four different ways.
It was either trained on Language A (self-transfer or ‘selfer‘
network) or Language B (transfer network) and the implanted
parameters were either fixed or allowed to be finetuned dur-
ing training. This process was repeated ∀ 1 ≤ n ≤ 11 and
for all pairs of languages resulting in a total of 198 networks
(see Figure 1 in [1] for a graphical depiction of a similar
experimental setup). The selfer networks served as a con-
trol to capture any changes in performance associated with
the surgery but unrelated to the transfer. As in [1], we also
measured the effect of leaving the first n layers untrained, i.e.
fixed at their random initialization, while training subsequent
layers normally. All networks were trained for 100 epochs.
Training parameters were identical to those of the baseline
models.

3. RESULTS

We found representations throughout the networks to be
highly transferable between all three languages. Top-1 test
phone classification accuracy for each network is plotted as
a function of the layer at which the surgery was performed
in Figure 1. Phone classification accuracy is measured with
respect to per frame phone-labels established in a forced
alignment.

3.1. Transfer networks

The only models that performed considerably worse than
the monolingual baseline models were the transfer networks
without finetuning whose surgery occurred at one of the fully
connected layers (the penultimate two layers). Transfer net-
works cut at any of the convolutional layers performed as well
as the monolingual baseline model, regardless of whether the
implanted layers were finetuned or not. We observed a slight
improvement over the monolingual baseline (1.3 percentage
points (pp)) for transfer networks with finetuning chopped at
one of the fully connected layers.

3.2. Selfer networks

All selfer networks with finetuning performed at the same
level as the mono-lingual baseline. Somewhat unexpectedly,
the selfer networks without finetuning performed best over-
all among the chimera networks. Selfer networks chopped
at late layers whose implants were not finetuned showed an
improvement of 2.7 pp.
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(a) Test on English (b) Test on German (c) Test on Dutch

Fig. 1: Test accuracy as a function of depth after 100 epochs. The plus sign indicates that the implanted pretrained layers were finetuned.
Th dashed black line indicates the performance of the monolingual baseline models. Up to the ninth layer, layers trained on one language
could be copied directly (without finetuning) in a network whose subsequent layers were trained on another language with little to no loss in
performance compared to baseline. Selfer networks without finetuning show an improvement compared to baseline. Freeze trained transfer
networks yielded the best overall performance. The pattern is similar for all three languages.

3.3. Random features

Previous work has shown that random, untrained weights can
often perform remarkably well in certain scenarios [14, 15].
Figure 2 shows accuracy as a function of the layer at which
training began, meaning that layers below layer n were ran-
domly initialized and never updated. We observed a gradual
drop in performance as a function of the depth at which train-
ing began. Random weights in early layers did not have a
large impact on performance. Using random weights for all
but the last layer resulted in near-chance performance. This
verifies the non-triviality of the success of our transfer net-
works without finetuning.

3.4. Freeze Training

The training of our selfer networks without finetuning some-
what resembles the freeze training procedure proposed by [2].
According to this procedure, layers are successively frozen
over the course of training, gradually reducing the number of
parameters to be updated until, by the end of training, only
the last layer is being updated. We hypothesized that weight
freezing partly explained the success of our selfer networks
without finetuning, so we created freeze trained versions of
both our selfer and transfer networks. Starting with a pre-
trained network, layers 1–11 (excluding layer 0) were trained
for 5 epochs. Then, for the next 5 epochs, only layers 2–11
were trained. From then on, another layer was removed from
the trainable parameters every 10 epochs for a total of 100

training epochs. The freeze trained models are represented
by the coloured dashed lines in Figure 1. All freeze trained
networks outperformed all other networks. The freeze trained
transfer networks performed best overall, achieving 4.5 pp
above baseline on average.

4. DISCUSSION

Our results suggest that, despite a large degree of transferabil-
ity of intermediate acoustic features between languages, naive
approaches to transfer (e.g. initializing with parameters from
another language) are not the most effective nor the most ef-
ficient. In particular, early layers need not be finetuned on the
target language at all. Subsequent layers benefit greatly from
freeze training on the target language. These freeze trained
transfer networks outperform all networks trained solely on
the target language, which demonstrates the improved gener-
alization that can be achieved when incorporating data from
multiple sources.

There are many differences between the current experi-
ments and those presented in [1] (task, domain, architecture).
While comparison between these studies is not straightfor-
ward, it may still aid interpretation of our results. To what
extent do these characterizations apply to all convolutional
architectures and tasks, in which case we expect alignment
of our results, and to what extent can the deviations that we
observe be explained by the particulars of our task or setup?

The performance of the networks with finetuning is
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Fig. 2: Using random weights up to layer n. The leftmost
points represent the baseline models. Performance decays
gradually as more layers are left untrained, only reaching
near-chance performance when nearly all layers are random.

largely consistent with [1]. However, the performance of net-
works without finetuning deviates considerably. The transfer
networks without finetuning in [1] show a gradual drop in
performance, starting at the 4th convolutional layer and even-
tually dropping nearly 8 pp by the penultimate layer (see
Figure 2 from [1]). Our transfer networks without finetun-
ing, on the other hand, show a sharp drop in performance
that starts only at the first fully connected layer (layer 9).
For the selfer networks without finetuning, we did not ob-
serve a performance drop when networks were chopped at
middle layers, as was reported in [1]. Instead, our selfer net-
works without finetuning outperformed all other ‘chimera’
networks, with accuracy increasing nearly monotonically
with the depth at which the surgery was performed. Finally,
[1]’s experiments with random weights quickly drop to near-
chance performance by layer 3, whereas our networks with
random weights decline gradually with depth, only approach-
ing near-chance performance when all but the last layer are
random.

The success of our selfer networks without finetuning is at
least partly explained by the fact that we are in an underfitting
regime. Unlike in [1], our baseline model has not converged
completely and we would expect continued training to im-
prove performance. However, if that were the only factor at
play, we would also expect our selfer networks with finetun-
ing to show improvement over baseline, but they do not. This
difference between selfer networks with and without finetun-
ing may be explained by weight freezing and the fact that
smaller networks train faster [16]. However, we don’t see a
benefit of weight freezing in the transfer networks without
finetuning. Something about freezing all but the last layer(s)
facilitates a 2.7 pp improvement over baseline in the selfer but

not the transfer networks. This suggests that there is some im-
portant language-specific information in the layers that show
a difference between the selfer and transfer networks without
finetuning (layer 3 and above). Layers 10 and 11 show worse
than baseline performance for the transfer network without
finetuning, indicating a larger degree of language-specificity
in these representations.

Our freeze training results corroborate the interpretation
that weight freezing is responsible for the success of our selfer
networks without finetuning. Furthermore, our freeze-trained
transfer networks performed best overall, demonstrating that
freeze training can actually recover the language-specific
information lacking in our transfer networks without finetun-
ing, yielding improved generalization. This likely reflects the
observation from [2] that CNNs converge ‘bottom-up’ during
training, with early layers stabilizing earlier in training. Re-
latedly, [17] state the proposition that no intermediate layer of
a multi-layer neural network will contain more target-related
information than the raw input, which requires a ‘bottom-
up’ flow of information; intermediate layers cannot pass on
target-related information that they do not receive. Thus,
we conclude that freezing the weights of a given layer can
only improve performance if that layer already passes on
the target-related information in a representation that can be
disentangled by subsequent layers. This was not generally
the case in our transfer chimera networks because important
language-specific information was not being conveyed. The
progressive freeze training regime, proposed by [2], allowed
this important language-specific information to be learned,
whereas generic fine-tuning did not. In this way, making
fewer parameter updates actually led to significant perfor-
mance gains.
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