
DADA: DEEP ADVERSARIAL DATA AUGMENTATION FOR EXTREMELY LOW DATA
REGIME CLASSIFICATION

Xiaofeng Zhang? Zhangyang Wang† Dong Liu? Qing Ling‡

?University of Science and Technology of China
†Texas A&M University
‡Sun Yat-Sen University

ABSTRACT
Deep learning has revolutionized the performance of classi-
fication, but meanwhile demands sufficient labeled data for
training. Given insufficient data, while many techniques have
been developed to help combat overfitting, the challenge re-
mains if one tries to train deep networks, especially in the
ill-posed extremely low data regimes: only a small set of la-
beled data are available, and nothing – including unlabeled
data – else. Such regimes arise from practical situations where
not only data labeling but also data collection itself is ex-
pensive. We propose a deep adversarial data augmentation
(DADA) technique to address the problem, in which we elabo-
rately formulate data augmentation as a problem of training
a class-conditional and supervised generative adversarial net-
work (GAN). Specifically, a new discriminator loss is proposed
to fit the goal of data augmentation, through which both real
and augmented samples are enforced to contribute to and be
consistent in finding the decision boundaries. Tailored training
techniques are developed accordingly. Source code is available
at https://github.com/SchafferZhang/DADA

Index Terms— classification, extremely low data regime,
GAN, data augmentation

1. INTRODUCTION

The performance of classification and recognition has been
tremendously revolutionized by the prosperity of deep learn-
ing [1]. Deep learning-based classifiers can reach unprece-
dented accuracy given that there are sufficient labeled data for
training. Meanwhile, such a blessing can turn into a curse:
in many realistic settings where either massively annotating
labels is a labor-intensive task, or only limited datasets are
available, a deep learning model will easily overfit and gener-
alizes poorly. Many techniques have been developed to help
combat overfitting with insufficient data, ranging from classi-
cal data augmentation [2], to dropout [1] and other structural
regularizations [3], to pre-training [4], transfer learning [5] and
semi-supervised learning [6]. However in low data regimes,
even these techniques will fall short, and the resulting models
usually cannot capture all possible input data variances and

distinguish them from nuisance variances. The high-variance
gradients also cause popular training algorithms, e.g., stochas-
tic gradient descent, to be extremely unstable.

To resolve the challenges, we have made multi-fold tech-
nical contributions in this paper: 1) For learning deep clas-
sifiers in extremely low data regimes, we focus on boosting
the effectiveness of data augmentation, and introduce learning-
based data augmentation, that can be optimized for classifying
general data without relying on any domain-specific prior or
unlabeled data. We call the proposed framework Deep Adver-
sarial Data Augmentation (DADA). 2) We propose a new loss
function for the GAN discriminator, that not only learns to
classify real images, but also enforces fine-grained classifica-
tion over multiple “fake classes”. That is referred to as the 2k
loss, in contrast to the k+1 loss used by several existing GANs
(to be compared in the context later). The novel loss function
is motivated by our need of data augmentation: the gener-
ated augmented (“fake”) samples need to be discriminative
among classes too, and the decision boundaries learned on
augmented samples shall align consistently with those learned
on real samples. 3) We conduct simulations on CIFAR-10,
to train deep classifiers in the extremely low data regimes,
demonstrating significant performance improvements through
DADA compared to using traditional data augmentation. To
further validate the practical effectiveness of DADA, we train
deep classifiers on real-world small dataset: the Curated Breast
Imaging Subset of the Digital Database for Screening Mam-
mography (CBIS-DDSM) dataset for the tumor classification
task. Numerical experiments demonstrate that DADA leads to
highly competitive generalization performance.

2. RELATED WORK

GANs [7] have gathered a significant amount of attention
due to their ability to learn generative models of multiple
natural image datasets. Conditional GAN [8] generates data
conditioned on class labels via label embeddings in both dis-
criminator and generator. Conditioning generated samples on
labels sheds light the option of semi-supervised classification
using GANs. In [9], the semi-supervised GAN has the dis-
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criminator network to output class labels, leading to a k + 1
class loss function consisting of k class labels if the sample
is decided to be real, and a single extra class if the sample
is decided to be fake. Such a structured k + 1 loss has been
re-emphasized in [10] to provide more informed training that
leads to generated samples capturing class-specific variances
better. Even with the proven success of GANs for producing
realistic-looking images, tailoring GANs for classification is
not as straightforward as it looks like [11].

Data augmentation is an alternative strategy to bypass the
unavailability of labeled training data, by artificially synthe-
sizing new labeled samples from existing ones. A latest work
[12] presented a novel direction to select and compose pre-
specified base data transformations (such as rotations, shears,
central swirls for images) into a more sophisticated “tool chain”
for data augmentation, using generative adversarial training.
They achieve highly promising results on both image and
text datasets, but need the aid of unlabeled data in training
(the same setting as in [10]). We experimentally compare the
method [12] and DADA and analyze their more differences in
Section 5.

A number of works [13, 14, 15, 16, 17, 18] explored the
“free” generation of labeled synthetic examples to assist train-
ing. However, they either relied on extra information, e.g.,
3D models of the subject, or were tailored for special object
classes, e..g, face or license plates. The synthesis could be
viewed as a special type of data augmentation that hinges on
stronger forms of priori invariance know,ledge.

3. TECHNICAL APPROACH

3.1. Problem Formulation a,nd Solution Overview

Data augmentation approaches seek an augmenter A, to syn-
thesize a new set D′ of augmented labeled data (x̄i, yi) from
(xi, yi), constituting the new augmented training set of size
|D| + |D′|. Traditional choices of A, being mostly ad-hoc
minor perturbations, are usually class-independent, i.e., con-
structing a sample-wise mapping from xi to x̄i without taking
into account the class distribution. Such mappings are usu-
ally limited to a small number of priori known, hand-crafted
perturbations. They are not learned from data, and are not op-
timized towards finding classification boundaries. To further
improve A, one may consider the inter-sample relationships
[19], as well as inter-class relationships in D, where training a
generative model A over (xi, yi) becomes a viable option.

The conceptual framework of DADA is depicted in Fig.
1. If taking a GAN point of view towards this, A naturally
resembles a generator: its inputs can be latent variables zi

conditioned on yi, and outputs x̄i belonging to the same class
yi but being sufficiently diverse from xi. C can act as the
discriminator, if it will incorporate typical GAN’s real-fake
classification in addition to the target k-class classification.
Ideally, the classifier C should: (1) be able to correctly clas-
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Fig. 1. An illustration of DADA.

sify both real samples xi and augmented samples x̄i into the
correct class yi; (2) be unable to distinguish xi and x̄i. The
entire DADA framework of A and C can be jointly trained
on (xi, yi), whose procedure will bear similarities to training
a class-conditional GAN. However, existing GANs may not
fit the task well, due to the often low diversity of generated
samples. We are hence motivated to introduce a novel loss
function towards generating more diverse and class-specific
samples.

3.2. Going More Discriminative: From k + 1 Loss to 2k
Loss

The discriminator of a vanilla GAN [7] has only one output
to indicate the probability of its input being a real sample. In
[10, 9], the discriminator is extended with a semi-supervised
fashion k + 1 loss, whose output is a (k + 1)-dimensional
probabilistic vector: the first k elements denote the proba-
bilities of the input coming from the class 1, 2, ..., k of real
data; the (k + 1)-th denotes its probability of belonging to
the generated fake data. In that way, the generator simply has
the semi-supervised classifier learned on additional unlabeled
examples and supplied as a new “generated” class. In contrast,
when in extremely low data regimes, we tend to be more “eco-
nomical” on consuming data. We recognize that the unlabeled
data provides weaker guidance than labeled data to learn the
classification decision boundary. Therefore, if there is no real
unlabeled data available and we can only generate from given
limited labeled data, generating labeled data (if with quality)
should benefit classifier learning more, compared to generating
the same amount of unlabeled data. Further, the generated la-
beled samples should join force with the real labeled samples,
and their decisions on the classification boundary should be
well aligned. Motivated by the above philosophy, we build
a new 2k loss function, whose first group of k outputs rep-
resent the probabilities of the input data from the class 1, 2,
..., k of real data; its second group of k outputs represent the
probabilities of the input from the class 1, 2, ..., k of fake data.

3.3. Training Algorithm Details

The training procedure of DADA is divided into two different
phases. In training phase I, which we call Generation train-
ing, the classifier and the augmenter compete with each other

2808



Table 1. The comparison of loss functions among GAN discriminators

.

Model Class Number Classes Training Data
Vanilla GAN [7] 2 real, fake unlabeled only

Improved GAN [10] k + 1 real1, ..., realk; fake labeled + unlabeled
Proposed 2k real1, ..., realk; fake1, ..., fakek labeled only

within a specific class. The game between the two players
will have its optimum only if pdata(x|y) = pg(x|y). Thus,
the optimal classifier has C(x|y) = pdata(x|y)/(pg(x|y) +
pdata(x|y)) = 1/2, indicating that the augmenter is trained
well enough so that the classifier can not discriminate them.

Similar to the vanilla GAN formulation, the loss functions
of the augmenter and the classifier in training phase I are:

LI
C =−Ex,y∼pdata(x,y) log[p(y|x, y < k + 1)]

−Ex,y∼pg(x,y) log[p(y|x, k < y < 2k + 1)] (1)

LI
G = −Ex,y∼pg(x,y) log[p(y − k|x, k < y < 2k + 1)]. (2)

Based on the observation of the Improved-GAN that the fea-
ture matching technique can help improve the classification
performance of the generated samples, we make some mod-
ifications on this training strategy. The conditioned feature
matching is formulated as:

Lfm =‖Ex,y∼pdata(x,y)f(x|y)−
Ez∼pz(z),y∼pc

f(G(z, y)|y)‖.
(3)

Here f(x) denotes activations on an intermediate layer of the
classifier. We keep pc the same to the true data label. With the
regularization of feature matching, the objective function of
generator in training phase I is hence:

LI
G = LI

G + λLfm. (4)

Once the training phase I is finished, assuming that the
generator can capture the class-wise data distribution, then it
comes to the training phase II called Classification training.
In this phase, the generator is fixed just as a data provider.
We only train the classifier on the generated data and the real
training data. The loss function of the classifier in training
phase II can be written as:

LII
C = Ldata + Lgen (5)

where

Ldata =−Ex,y∼pdata(x,y) log[p(y|x, y < k + 1)+

p(y + k|x, y < k + 1)]
(6)

and

Lgen =−Ex,y∼pg(x,y) log[p(y|x, k < y < 2k + 1)+

p(y − k|x, k < y < 2k + 1)].
(7)

The entire training procedure is summarized in Algorithm 1

Algorithm 1 Minibatch stochastic gradient descent training of
DADA
Require: The training epochs KG, KC in phase I and phase

II, the training set D, the test set T , the batch size B
1: for number of epochs KG do
2: Sample a batch of pairs (z, y), z ∼ pz(z), y ∼ pg, a

batch of pairs (x, y) ∼ pdata(x, y).
3: Update the classifier by performing stochastic gradient

descent on LI
C

4: for number of epochs e do
5: Sample a batch of pairs (x, y) ∼ pdata(x, y), a batch

of pairs (z, y), z ∼ pz(z), keep y the same with the
true data

6: Update the generator by performing stochastic gradi-
ent descent on LI

G

7: end for
8: end for
9: for number of epochs KC do

10: Sample a batch of pairs (z, y), z ∼ pz(z), y ∼ pg, a
batch of pairs (x, y) ∼ pdata(x, y).

11: Update the classifier by performing stochastic gradient
descent on LII

C

12: end for

4. SIMULATIONS

To evaluate our approach, we first conduct simulations CIFAR-
10 image classification benchmark. We intentionally sam-
ple the given training data to simulate the extremely low
data regimes, and compare the following training options. 1)
C: directly train a classifier using the limited training data;
2) C augmented: perform traditional data augmentation (in-
cluding rotation, translation and flipping), and then train a
classifier; 3) DADA: the proposed data augmentation; 4)
DADA augmented: first apply the same traditional augmenta-
tion as C augmented on the real samples, then perform DADA.
We use absolutely no unlabeled data or any pre-trained
initialization in training, different from the setting of most
previous works. We use the original full test sets for evaluation.
The network architectures that we used have been exhaustively
tuned to ensure the best possible performance of all baselines
in those unusually small training sets.

To illustrate the advantage of our proposed 2k loss, we
also use the vanilla GAN [7] (which adopt the 2-class loss), as
well as the Improved GAN [10] (which adopt the (k+1)-class
loss), as two additional baselines to augment samples. For the
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Fig. 2. Results on CIFAR-10, the test accuracy in different
training settings with respect to the number of training images
per class.

vanilla GAN, we train a separate generator for each class. For
Improved GAN, we provide only the labeled training data with-
out using any unlabeled data: a different and more challenging
setting than evaluated in [10]. They work with traditional data
augmentation too, similarly to the DADA augmented pipeline.
For all compared methods, we generate samples so that the
augmented dataset has 10 times the size of the given real la-
beled dataset.

Fig. 2 summarizes the performance of the compared meth-
ods. The vanilla GAN augmentation performs slightly better
than the no-augmentation baseline, but the worst in all other
data augmentation settings. It concurs with [20] that, though
GAN can generate visually pleasing images, it does not natu-
rally come with increased data diversity from a classification
viewpoint. While improved GAN achieves superior perfor-
mance, DADA (without using traditional augmentation) is able
to outperform it at the smaller end of sample numbers (less
than 400 per class). Comparing with vanilla GAN, Improved
GAN and DADA augmented reveal that as the discrimina-
tor loss goes “more discriminative”, the data augmentation
becomes more effective along the way.

Furthermore, DADA augmented is the best performer
among all, and consistently surpass all other methods for the
full range of [50, 1000] samples per class. It leads to around
8 percent top-1 accuracy improvement in the 500 labeled
sample, 10 class subset, without relying on any unlabeled data.
It also raises the top-1 performance to nearly 80%, using only
10% of the original training set (i.e. 1000 samples per class),
again with neither pre-training nor unlabeled data.

5. EXPERIMENTS WITH REAL-WORLD SMALL
DATA

In this section, we discuss real-data experiments which fall
into extremely low data regimes. The data, not just labels, are

Table 2. Comparison between DADA and Tanda.
Models Acc

Tanda (MF) 0.5990
Tanda (LSTM) 0.6270
DADA 0.6196
DADA augmented 0.6549

difficult to collect and subject to high variability. We show that
in this cases, the effects of transfer learning are limited, and/or
no ad-hoc data augmentation approach might be available to
alleviate the difficulty to train deep networks. In comparison,
DADA can be easily plugged in and boost the classification
performance in all experiments.

In the existing learning-based data augmentation work
Tanda [12], most training comes with the help of unlabeled
data. One exception we noticed is their experiment on the
Curated Breast Imaging Subset of the Digital Database for
Screening Mammography (CBIS-DDSM) [21, 22, 23], a medi-
cal image classification task whose data is expensive to collect
besides labeling. Since both Tanda and DADA use the only
available labeled dataset to learn data augmentation, we are
able to perform a fair comparison on CBIS-DDSM between
the two. We follow the same classifier configuration used for
CBIS-DDSM by Tanda: a four-layer all-convolution CNN
with leaky ReLUs and batch normalization. We resize all
medical images to 224 × 224. Note that Tanda heavily re-
lied on hand-crafted augmentations: on DDMS, they used
many basic heuristics (crop, rotate, zoom, etc.) and several
domain-specific transplantations. For DADA augmented, we
apply only rotation, zooming, and contrast as the traditional
augmentation pre-processing, to be consistent with the user-
specified traditional augmentation modules in Tanda. We com-
pare DADA and DADA augmented with two versions of Tanda
using mean field (MF) and LSTM generators [12], with results
in Table 2 showing the clear advantage of our approaches.

6. CONCLUSION

We present DADA, a learning-based data augmentation solu-
tion for training deep classifiers in extremely low data regimes.
We leverage the power of GAN to generate new training data
that both bear class labels and enhance diversity. A new 2k
loss is elaborated for DADA and verified to boost the perfor-
mance. We perform extensive simulations as well as real-data
experiments, where results all endorse the practical advantage
of DADA.
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pose domain-specific transformations for data augmen-
tation,” in Advances in Neural Information Processing
Systems, 2017, pp. 3239–3249.

[13] Zhangyang Wang, Jianchao Yang, Hailin Jin, Eli Shecht-
man, Aseem Agarwala, Jonathan Brandt, and Thomas S
Huang, “Deepfont: Identify your font from an image,” in
Proceedings of the 23rd ACM international conference
on Multimedia. ACM, 2015, pp. 451–459.

[14] Tuan Anh Le, Atilim Giineş Baydin, Robert Zinkov, and
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