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ABSTRACT

High performance of deep learning models typically comes at
cost of considerable model size and computation time. These
factors limit applicability for deployment on memory and bat-
tery constrained devices such as mobile phones or embedded
systems. In this work, we propose a novel pruning technique
that eliminates entire filters and neurons according to their
relative L1-norm as compared to the rest of the network, yield-
ing more compression and decreased parameters’ redundancy.
The resulting network is non-sparse, however, much more
compact and requires no special infrastructure for deployment.
We prove the viability of our method by achieving 97.4%,
86.1%, 47.8% and 53% compression of LeNet-5, VGG-16,
ResNet-56 and ResNet-110 respectively, exceeding state-of-
the-art compression results reported on VGG-16 and ResNet
without losing any performance compared to the baseline. Our
approach does not only exhibit good performance but is also
easy to implement.

Index Terms— Model Compression, Pruning, Efficient
Deep Learning, Neural Networks

1. INTRODUCTION

While deep learning models have become the method of choice
for a multitude of applications, their training entails optimizing
a large number of parameters at extensive computational costs
(energy, memory footprint, inference time).

This effectively limits their deployment on storage and
battery constrained devices, such as mobile phones and embed-
ded systems. To study their parameterization behavior, in [1],
significant parameters’ redundancy was shown in several deep
learning models. To reduce redundancy and compress deep
learning models without loss in accuracy, previous work pro-
posed pruning weights by optimizing network complexity us-
ing second-order derivative information [2, 3]. Due to the high
computational overhead of second order derivative, low-rank
approximations to reduce the size of the weight tensors were
explored in [4, 5] .

Another line of work [6, 7], proposed to prune individual
layer weights with the lowest absolute value (non-structural
sparsification of layer weights). The same strategy was fol-
lowed in [8] while incorporating quantization and Huffman

Fig. 1: Overview. We calculate the L1-norm of each filter in each
layer, then we normalize each filter norm according to its number
of kernel weights, followed by stacking all normalized norms of all
filters from all layers, finally, sort then prune the filters corresponding
to the least p% of normalized norms.

coding to further boost compression. While the aforemen-
tioned methods considered every layer independently, [9]
pruned the network weights in a class-blind manner, e.g. indi-
vidual layer weights are pruned according to their magnitude
as compared to all weights in the network.

Noteworthy, all non-structured pruning approaches, gener-
ally result in high sparsity models that require special hardware
and software. Structured pruning alleviates this by removing
whole filters or neurons, producing a non-sparse compressed
model. In this regard, channel-wise pruning according to the
L1-norm of the corresponding filter was proposed in [10]. [11]
learned a compact model based on learning structured sparsity
of different parameters. An algorithm was implemented to re-
move redundant neurons iteratively on fully connected layers
in [12]. In [13], connections leading to weak activations were
pruned. Finally, [14] pruned the least important neurons after
measuring their importance with respect to the penultimate
layer. Generally, in structured pruning,each layer’s impor-
tance/sensitivity to pruning was evaluated separately and each
layer was pruned accordingly.

This work features two key components: a) Blindness:
all layers are considered simultaneously; blind pruning was
first introduced by [9] to prune individual weights; b) Struc-
tured Pruning: removal of entire filters instead of individual
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weights. To the best of our knowledge, we are the first to use
these two components together to consider structured pruning
across all layers simultaneously. This is achieved by prun-
ing filters based on their relative L1-norm compared to the
sum of all filters’ L1-norms across the network, instead of
pruning filters according to their L1-norm within the layer
[10], inducing a global importance score for each filter (Fig
1). Most importantly, due to the global importance score con-
structed, we do not impose any restrictions on which layers
or filters to be pruned. his is in contrast to the limitations of
[10], which propose pre-calculation of layers’ sensitivity to
pruning and consequently avoid pruning sensitive layers com-
pletely, assuming that a layer containing some high sensitive
filters is inherently very sensitive. Such assumption is not
accurate, as each layer can contain different filter sensitivities
and subsequently least sensitive filters can be pruned

The contribution of this paper is two-fold: i) Proposing
a structured class-blind pruning technique to compress the
network by removing whole filters and neurons, which re-
sults in a compact non-sparse network with the same baseline
performance. ii) Introducing a visualization of global filter
importance to devise the pruning percentage of each layer.

As a result, the proposed approach achieves higher com-
pression gains with higher accuracy compared to the state-of-
the-art results reported on VGG-16, ResNet-56 and ResNet-
110 on the CIFAR10 dataset [15].

2. BACKGROUND

Several work studied compressing deep learning models while
maintaining the same baseline performance. TThe most related
works to our method can be categorized as following:

Weight Pruning: Recently, [6] proposed pruning multiple
deep learning models up to 92% by zeroing out the least per-
centage of weights per layer based on a layer weight standard
of deviation. A follow-up work by [8] incorporated pruning
by quantization and Huffman coding to limit the non-sparse
weight representation, and compressing the resulting weight
representation, respectively. Moreover, [7] proposed binary
masks that are learned with the weights simultaneously during
training. Thereby, the weights are multiplied by the masks,
resulting in a sparse parameter representation. While all these
methods produce high sparsity models, their hyperparameter
optimization is very complex. Most importantly, in order to
benefit from high sparsity models, special hardware or soft-
ware is required.

Structured Pruning. To address the limitation of sparsity
induced pruning, structured pruning was introduced. The un-
derlying idea is to produce structured sparsity, e.g. remove
parts of the structure, equivalent to filters/neurons in CNNs.
[10] pruned filters having the lowest weights in terms of L1-
norm within each layer, eventually removing filters of a trained
network, followed by retraining the network to regain accu-
racy. [11] proposed a method that learns a compact model

based on learning structured sparsity of filters, channels, filter
shapes, and layer depth of the base model. Moreover, [12]
implemented a data-free algorithm to remove redundant neu-
ron by neuron iteratively on fully connected layers. Also, [13]
identified redundant connections based on analyzing weak neu-
rons on a validation set according to their weak activations.
Thus, pruning the connections leading to the weak neurons it-
eratively until a compact model is obtained. In [16], a sparsity
regularizer is imposed on outputs of various network entities
such as neurons, groups or residual blocks after introducing
a scale factor to scale the structures’ output. By minimizing
the scaling factors, speed-up on some models was achieved
as well as limited compression results. Finally, [14] pruned
neurons by measuring the neuron importance with respect to
the last layer before the classification layer. To the best of our
knowledge, they achieved state-of-the-art structured pruning
compression results.

Similar to [10], our proposed approach prunes filters em-
ploying the L1-norm. However, instead of choosing which
filter to prune according to its relative L1-norm within its layer,
we prune according to the relative norm with respect to the all
layers.

3. STRUCTURED CLASS-BLIND PRUNING

Consider a network with a convolutional (conv) layer and a
fully connected (fc) layer. We denote each filter Filteri, where
i ∈ [1, F ], and F is the total number of filters in the conv
layer. Each filter is a 3D kernel space consisting of channels,
where each channel is associated with 2D kernel weights. For
the fc layer, we denote Wm, a 1-D feature space containing
all the weights connected to certain neuron Neuronm, with
m ∈ [1, N ] and N denoting the number of neurons. It should
be noted that we do not prune the classification layer.

Each pruning iteration in our approach is structured as
presented in Algorithm 1. Moreover, we present important
elements in our method as below:

Importance calculation: Although pre-calculation of fil-
ters or layers’ sensitivity to be pruned is not needed in our
method, it can be visualized as part of the pruning criteria.
In our algorithm, blindness implies constructing a hidden im-
portance score, which corresponds to the relative normalized
L1-norm. For instance, the relevant importance for a certain
filter in a conv layer w.r.t. all other filters in all layers is the
ratio between the filter’s normalized norm and the sum of all
filters’ normalized norms across the network.

Normalization: As each layer’s filters have different num-
ber of kernel weights, we normalize filters’ L1-norms by divid-
ing each over the number of kernel weights corresponding to
the filter (Line 3 and 6 as indicated in Algorithm 1). Alterna-
tively, without compensating for the number of weights, filters
with more kernel weights would have higher probabilities of
higher L1-norms, hence lower probability to get pruned.

Retraining process: Pruning without further adaption,
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Algorithm 1 Pruning procedure
1: for i← 1 to F do . loop over filters of a conv layer
2: L1_conv(i)← sum(|Filteri|) . calculate L1-norm of all channels’ kernel weights of each filter
3: norm_conv(i)← L1_conv(i)/size(Filteri) . normalize by filter weights count
4: for m← 1 to N do . loop over Neurons of a fc layer
5: L1_fc(m)← sum(|Wm|) . for each Neuron, calculate L1-norm of incoming weights
6: norm_fc(m)← L1_fc(m)/size(Wm) . normalize by number of weights connected
7: norms← stack(norm_conv, norm_fc) . stack all normalized norms from all layers
8: sorted← sort(norms) . sort ascendingly
9: threshold← perc(sorted, p) . threshold based on a percentage p of sorted norms values

10: for i← 1 to F do
11: if norm_conv(i) < threshold then
12: prune(Filteri) . remove filter if its normalized norm is less than threshold
13: for m← 1 to N do
14: if norm_fc(m) < threshold then
15: prune(Neuronm) . remove neuron if its normalized norm is less than threshold

results in accuracy loss. Therefore, in order to regain base
performance, it is necessary for the model to be retrained. To
this end, we apply an iterative pruning schedule that alternates
between pruning and retraining. This is conducted until a
maximum compression is reached without losing the base
accuracy.

4. EXPERIMENT

In order to assess the efficacy of the proposed method, the
performance of our technique is evaluated on a set of different
networks: LeNet-5 on MNIST [17], and a version of VGG-16
[10], ResNet-56 and ResNet-110 ([18]) on CIFAR-10 [15].
Also, we conduct an ablation study of our method on LeNet-5.
Finally, we analyze some of the resulted pruning patterns.

We use identical training settings for ResNet and VGG-16,
as [18], except after pruning where we retrain for 50 epochs
and with an initial learning rate of 0.005. Moreover, when a
filter is pruned, the corresponding batch-normalization weight
and bias applied to that filter are pruned accordingly.

We report compression results on the existing benchmark
[10, 14]. As shown in Table 1, we outperform the state-of-the-
art compression results reported by [14] on both ResNet-56
and ResNet-110 and on VGG-16 as reported by [10], both
with less error compared to the baseline.

In Table 3, while using one-shot pruning, the influence of
our method’s different components; structured pruning and
blindness, is analyzed by removing a component each test,
resulting in: i) Non-Structured - pruning applied on weights
separately. ii) Non-Blind - every layer is pruned individually.
Then, the effect of the pruning strategy on the method with all
its components is analyzed by comparing: i) Ours-Oneshot -
using one-shot pruning and ii) Ours - using iterative pruning.

By comparing the previous versions that use one-shot prun-
ing, our method has fewer parameters; (Non-Structured and

Non-Blind). Also, applying pruning iteratively is superior to
one-shot pruning (Table 3).

We also show in Table 2 that our method performs bet-
ter than previously mentioned non-structured weight pruning
techniques [6, 7]. Proposed structured class-blind pruning
achieves comparable performance as [8], without requiring
customized hardware and software to realize the full advantage
of the method’s compression.

Finally, we explore the patterns of layers pruned and cap-
ture the behavior of class-blind pruning on realizing the most
sensitive layers. To be able to compare with the other struc-
tured pruning methods, we plot the pruning percentage of each
layer according to percentage of filters/neurons pruned from
the layer. In Fig. 2, a comparison between our method and [6]
in terms of the resulted sparsity of the weights and a compari-
son between our method and [10] in terms of filters/neurons
pruning pattern are done. We observe similar pruning pattern
as both methods, where the first layer is the least pruned and
the third layer is the most pruned for LeNet, while for VGG-16,
similar but much smoother pruning pattern can be observed.

In Fig. 3 the effect of pruning in our method vs. the non-
structured version of our method is studied by iteratively prun-
ing 94% of the network using each method. It is obvious
after retraining that our method has a higher percentage of
very weak neurons (mostly pruned) and a higher percentage
of strong neurons, while the non-structured version has the
highest percentage of neurons having intermediate values.

5. DISCUSSION

Our method exhibits superior performance in terms of com-
pression and error score as shown on the tests on VGG-16
and ResNet (Table 1). Moreover, studying the components of
the method in Table (3) shows that every component in the
method has a significant impact on increasing compression.
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Network Model Error% Params%
Baseline 6.75

VGG-16 Li et al.-A [10] 6.60 64.00
Ours 6.59 86.10
Baseline 6.96
Li et al.-A [10] 6.90 9.40

ResNet-56 Li et al.-B [10] 6.94 13.70
NISP-56 [14] 6.99 42.60
Ours 6.88 47.86
Baseline 6.47
Li et al.-A [10] 6.45 2.30

ResNet-110 Li et al.-B [10] 6.70 32.40
NISP-110 [14] 6.65 43.25
Ours 6.44 53.06

Table 1: Benchmark results. Error.% denotes the error percentage;
Param% denotes the percentage of pruned parameters

Method Error% Params% Eff. Params%
Baseline 0.80

Han et al. [6] 0.77 92.00 84.00
Srinivas et al. [7] 0.81 95.84 91.68

Han et al. [8] 0.74 97.45 -
Ours 0.75 97.40 97.40.

Table 2: Results on LeNet-5. Params.% is the parameters’ prun-
ing percentage; Eff.Params%. is the effective parameters’ pruning
percentage with taking into account the extra indices storage for
non-structured pruning as studied by [19]

Method Error% Params% Eff. Params%
Baseline 0.80

Non-Structured 0.77 93.04 86.08
Non-Blind 0.76 89.80 89.80

Ours-Oneshot 0.80 96.06 96.06
Ours 0.75 97.40 97.40

Table 3: Study of different components of our method. Params.% is
the parameters’ pruning percentage; Eff.Params%. is the effective
parameters’ pruning percentage with taking into account the extra
indices storage for non-structured pruning as studied by [19].

Also, the pruning pattern study shows that the pruning pattern
resulted from our method is similar to [6] on LeNet-5 and
similar to [10] using VGG-16, except we do not avoid sensi-
tive layers as [10] and hence our pattern is much smoother.
Additionally, through the experiment on ResNet, we noticed
that layers that are sensitive to pruning include those that lie
at residual blocks close to the layers where the number of
feature maps changes (less pruned), which is similar to the
findings of [10]. However, in contrast to the same work, we
find that earlier layers are less pruned than the deeper layers.
We suggest that our evaluation of layer’s sensitivity to pruning
is more accurate because of our global importance score for

1 2 3 4
Layer Number

0

20

40

60

80

100

Pr
un

in
g 

Pe
rc

en
ta

ge

Weight Sparsity in LeNet-5 
Ours
Han et al.

2 4 6 8 10 12 14
Layer Number

0

20

40

60

80

Pr
un

in
g 

Pe
rc

en
ta

ge

Pruning Percentage For Each Layer in VGG-16
Pruning Pattern_Ours
Pruning Pattern_Li et al.

Fig. 2: Left: Weights sparsity for LeNet-5 after pruning vs Han et al.
[6]. Right: Filters/Neurons sparsity for VGG-16 vs Li et al. [10].
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Fig. 3: Effect of different methods on the neurons’ distribution; the
x-axis shows the magnitude value range of neurons, while the y-axis
the number of neuron in log-scale.

each filter. Finally, it can be deduced from the results of Ta-
ble 3 that although our method prunes a lot of weak neurons,
it encourages more activated neurons when compared to the
unstructured counterpart. By pruning neurons, the unpruned
neurons becomes more active to compensate for their pruned
counterparts.

6. CONCLUSION

We presented a novel structured pruning method to compress
neural networks without losing accuracy. By pruning layers
simultaneously instead of looking at each layer individually,
our method combines all filters and output features of all layers
and prunes them according to a global threshold. We have sur-
passed state-of-the-art compression results in our results that
included VGG-16, ResNet-56 and ResNet-110 on CIFAR-10.
Also, we showed that only 11K parameters are sufficient to ex-
ceed the baseline performance on LeNet-5, compressing more
than 97%. Additionally, thanks to the hidden importance score,
our method succeeded to extract similar pruning patterns to
other methods which used heuristics. To realize the advantages
of our method, no dedicated hardware or library is needed. For
future work, we are dedicated to proving the applicability of
our method for further architectures and datasets. Hence, we
plan to experiment using multiple models such as ResNet on
ImageNet and/or other comparable architectures. Additionally,
we plan to further investigate structured pruning and coupling
it with an information theoretic view.
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