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ABSTRACT

We propose Independent Component Autoencoder (ICAE),
a deep neural network-based framework for nonlinear Inde-
pendent Component Analysis (ICA). The proposed method
consists of a penalized autoencoder and a training objective
that is to minimize a combination of the reconstruction loss and
an ICA contrast. Unlike many previous ICA methods that are
usually tailored to separate specific mixture, our method can re-
cover sources from various mixtures, without prior knowledge
on the nature of that mixture.

Index Terms— Independent Component Analysis, Au-
toencoder, Representation Learning, Nonlinear mixture

1. INTRODUCTION

Blind source separation (BSS) [1] aims at recovering unob-
served latent variables or sources s = (s1, . . . , sd)

T from
only observed signals x = (x1, . . . , xn)T which are unknown
functions of the sources, i.e.

x = Φ(s). (1)

Independent Component Analysis (ICA) [2, 3] is the major
framework for solving BSS problems which based on the
assumption that the sources are statistically independent.

While linear BSS problems can be efficiently solved
by ICA [2], the nonlinear ones are, on the other hand, ill-
conditioned in general [4, 5]. But if Φ and Ψ

def
= Φ−1

are properly constrained, the source separation problem can
still be solved by ICA. One important example is the so
called post-nonlinear (PNL) mixture [6]. The PNL mixture
Φ = f ◦A consists of a linear mixture A = (aij), followed
by a channel-wise invertible nonlinear mapping fi, i.e.

xi = fi

( d∑
j=1

aijsj

)
, ∀i = 1, . . . , n. (2)

If one constrains the separating structure as Ψ = B ◦ g,
i.e. a composition of a channel-wise nonlinear mapping g =
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(g1, . . . , gn) and a linear mapping B, then it is shown [6, 7]
that under mild conditions the separation can be achieved via
ICA. Another important class of nonlinear ICA is the linear-
quadratic (LQ) mixture [8, 9]. The LQ mixture model assumes
that the observed signal x is the sum of a linear function of s
and a quadratic form of s:

xi =

d∑
j=1

aijsj +

d∑
j=1

d∑
k=1

bijksjsk, ∀i = 1, . . . , n. (3)

where (aij) and (bijk) are fixed scalars. Deville and Hosseini
[8, 9] have shown that under some mild conditions the LQ mix-
ture can be separated. Their solution is based on the recurrent
neural network.

In this work, we propose a deep neural network-based
framework for solving both linear and nonlinear ICA prob-
lems, which we shall refer to as the Independent Component
AutoEncoder (ICAE). The neural network has long been a
powerful tool for solving nonlinear ICA problems. For pre-
vious works we refer to [10, 11, 12, 13, 14, 15, 16, 17, 18].
The key feature of our methods is that it can successfully sepa-
rate various mixtures, without prior knowledge on the nature
of that mixture or the exact number of the sources. This is
achieved via incorporating the reconstruction loss as part of
the training objective, which is crucial for regularizing the
solution. Similar approach can also be found in [19, 13, 18].
Our method is essentially an autoencoder [20] that targets a
feature representation with independent components. To pro-
mote independence, we propose to penalize the representation
with an ICA contrast, which can be regarded as a measure of
degree of independence [2], or “nongaussianity” of the compo-
nents [3]. By such penalization, the representation learned will
eventually have independent components, with distributions
that are non-Gaussian.

2. INDEPENDENT COMPONENT AUTOENCODER

2.1. Training objective

The pipeline of ICAE is depicted in Fig.1. For simplicity we
shall assume that the number of sources d is known. The
case for unknown d will be discussed in Section 3.4.2. The
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Fig. 1. From left to right: The unknown source s (red nodes) is transformed by a nonlinear function Φ. The observation
x = Φ(s) (yellow nodes) is first normalized via x̃i = (xi − x̄i)/σi, then fed as input to an autoencoder A which consists of
an encoder E (green nodes) and a decoder D (blue nodes). All neurons, except for those in the output layer of the encoder and
decoder, are equipped with tanh activation function. The autoencoder is trained in such a way that the encoded representation r
(orange nodes) has zero mean, unit variance and statistically independent components.

observed signal x = Φ(s) is fed after channel-wise normaliza-
tion as input features to an autoencoder A = D ◦ E consisting
of an encoder E : Rn → Rd and a decoderD : Rd → Rn. The
autoencoder depends on trainable parameters θ, but for con-
ciseness we will drop it from the notation. Our goal is to train
the autoencoder in such a way that the encoded representation
r = E(x̃) has zero mean, unit variance and statistically inde-
pendent components. To achieve this, we propose to minimize
the following loss function:

L(θ) = D
(
x̃,A(x̃)

)
+ λG

(
r), (4)

where on the right hand side of (4):

1. The first term D
(
x̃,A(x̃)

)
, referred to as the recon-

struction loss, measures the difference between input x̃
and output A(x̃) of the autoencoder. In principle any
reasonable distance metric D(·, ·) should work. Here
we take the simplest one, namely the l2 loss employed
in conventional autoencoder, i.e.

D
(
x̃,A(x̃)

)
= E‖x̃−A(x̃)‖2. (5)

This term regularizes the learned representation, forcing
it to be capable of reconstructing the input feature.

2. The second term G(r), which we refer to as the ICA
contrast, is a measure of independence of the compo-
nents of r = (r1, . . . , rd)

T. A natural candidate for G
would be the mutual information. However, as evaluat-
ing the mutual information involves the estimation of
the underlying pdf, which is a difficult task, we resort
to surrogates. Among the many valid candidates, we
choose the following ICA contrast borrowed from [21]:

G(r) = −
d∑
i=1

∣∣E[r4
i ]− 3

∣∣. (6)

This contrast is based on the fourth-order cumulant [2, 1]
and assumes a prewhitened input r. To accommodate
the latter requirement, we have applied mean removal
and PCA based whitening to r before passing it to G(·).

3. Coefficient λ is a hyperparameter that balances the
weights between the reconstruction loss and the ICA
contrast. Clearly setting λ = 0 would lead to a con-
ventional autoencoder, whereas pushing λ towards∞
would resulting in a pure ICA contrast. In our experi-
ments, we have always set λ = 0.005. The impact of
this parameter on separation performance will be studied
in Section 3.4.4.

2.2. Implementation details

As a common practice, the observation x is normalized be-
fore feeding it to the neural network. For the ith channel, the
normalized observation is defined as x̃i = xi−x̄i

σi
, where x̄i

and σi are respectively the sample mean and sample standard
deviation of xi. The encoder and decoder network typically
consists of stacked fully-connected layers. The number of
layers and number of neurons per layer determine the capacity
of the autoencoder, hence they can be customized according
to the application. In our experiments, both the encoder and
decoder have identical structure of MLP with two hidden lay-
ers each containing 64 and 16 neurons. Neurons of all layers
except for the output layers of the encoder and decoder are
equipped with tanh activation function.

Code for reproducing the results presented in the current
work is open sourced and can be downloaded form the inter-
net1.

1https://github.com/TianwenWei/ICAE.git
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3. NUMERICAL EXPERIMENTS

3.1. Configuration

Throughout the experiments, we fix d = 5 and use synthetic
sources all having zero mean and unit variance. The sources
are plotted in the top five rows of Fig. 4. We shall focus on
the following types of mixture: 1) Linear mixture; 2) PNL
mixture, as defined in (2); 3) LQ mixture, as defined in (3). If
not otherwise stated, we always use 10k samples as training
data with feature dimension (i.e. number of mixed compo-
nents) n = 10. For nonlinear functions such as those used
in the PNL mixture, we consider the following: f1(x) = x3,
f2(x) = sigmoid(x), f3(x) = exp (x/3), f4(x) = tanh(x)
and f5(x) = log

(
1+exp(x)

)
. These functions are all smooth

and strictly increasing. We use Adam [22] to minimize the
loss with learning rate 0.002 and a batch size 512. All statis-
tics involved, such as those in (5) and (6) are computed in a
per mini-batch basis. The training is considered finished after
100k iterations.

To evaluate the performance, we compute the output r
of the representation layer on a test set of size 1024, then
try to find a match with the ground truth sources s1, . . . , sd.
Basically, we consider ri, the ith component of r matches sj
if either E‖si − rj‖2 or E‖si + rj‖2 is the smallest among
all possible combinations of (i, j). Here the mathematical
expectation is estimated by the sample mean over the test set.
Let P denote the set of permutations over {1, . . . , d}. The
overall evaluation metric is defined as the average of MSEs:

min
σ∈P

{
1

d

d∑
i=1

min{E‖si − rσ(i)‖2,E‖si + rσ(i)‖2}

}
,

which we refer to as the MSE as well.

3.2. Model selection

Sometimes the ICAE network fails to converge or converges
to degenerate solutions. Hence it is crucial to train the network
multiple times and perform the model selection in a principled
way. Evaluating the model is a bit tricky, because a solution
with lower training loss does not necessarily leads to a better
separation quality. In the experiments that follow, we train the
network five times with different initializations for each set of
hyper-parameters, with fixed observation x. We monitor the
value of the ICA contrast during the training for each run. We
shall select the network for which the ICA contrast (6) has the
lowest variance computed over last 5k iterations of training. It
turns out that such strategy tends to select the best model.

3.3. Baselines

We report in Table 1 the result of symmetric FastICA [23] and
ANICA [18] as baselines. The FastICA algorithm is one of
the most successful algorithm for linear ICA. Understandably,

Table 1. A comparison of FastICA, ANICA and ICAE. Table
cell “0.001(1.000)” means MSE = 0.001 and the average
correlation of the estimated components and the corresponding
sources is 1.000.

linear PNL LQ

FastICA 0.001(1.000) 0.617(0.703) 0.227(0.886)
ANICA - (0.999) - (0.988) -
ICAE 0.016(0.993) 0.025(0.986) 0.041(0.979)

it does not perform well for PNL and LQ mixture. We ob-
tained the FastICA result using Python’s scikit-learn package.
The ANICA algorithm is a recently proposed nonlinear ICA
method which is based on an encoder-decoder network similar
to ours, plus an adversarial discriminator network that pro-
motes independence. The ANICA results in Table 1 is directly
extracted from [18], where only the average correlations were
given. Since those were obtained in a comparable but different
setting (4k training samples, six sources) with specialized net-
work structure that depends on the mixture, they are included
here merely to give a rough baseline of a dedicated nonlinear
ICA algorithm.

3.4. Impact of hyper parameters

3.4.1. Impact of feature dimension

We have run five independent simulations for each mixture
and for each n ∈ {5, 6, 7, 8, 9, 10}. The results as measured
by average MSE are plotted in Fig. 2. We found out that
the proposed method benefits greatly from the excess feature
dimensions. From the plots we observe that for all types of
mixture, as n grows the corresponding MSE decreases steadily
and finally fall below 0.05. The low MSE obtained for small n
(i.e. close to d) is due to the fact that the model often gets stuck
in degenerate solutions, recovering only a subset of the sources.
For larger n, this phenomenon occurs much less frequently.

Fig. 2. Average MSE obtained for different mixtures.
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3.4.2. Impact of representation dimension

We have also experimented with various representation di-
mension (number of estimated sources) p def

= dim(r), ranging
from 3 to 10. The obtained reconstruction losses and MSEs
are reported in Fig. 3. It can be seen that the optimal perfor-
mance is obtained at p = d, which is more or less expected.
If p < d, then the network cannot accurately recover the
independent components due to the information bottleneck,
resulting in both high reconstruction loss and high MSE. If
p > d, then the separation performance tends to deteriorate
as p increases, but if the excess dimension p− d is relatively
small, then the sources can still be recovered with acceptable
precision. A sources vs. estimates plot for the case p = 8 with
MSE = 0.028 is given in Fig 4.

Fig. 3. Left: Reconstruction loss vs. representation dimension.
Right: MSE vs. representation dimension. The number of
sources d = 5 is fixed throughout.

3.4.3. Impact of network complexity

We have also experimented ICAEs with one and three hidden
layers, respectively. Overall, as the number of hidden layers
grows it becomes increasingly difficult to find a stable solution,
while in terms of the separation performance all three models
yield comparable results provided a converged network. With
1-layer ICAE, the source separation is almost always success-
ful except for the scenario p > d, in which case usually only a
subset of the sources can be correctly separated. When training
a 3-layer ICAE, the chance of obtaining a divergent network is
substantially higher than dealing with a 1-layer or 2-layer one.
In our experiments approximately two thirds of the solutions
given by 3-layer ICAE are degenerate or divergent. Hence in
terms of the practicality the 2-layer one is preferred.

3.4.4. Impact of hyper parameter λ

The value of λ plays a crucial role in our model. Here we
report the experiment results for a wide range of λ with the
PNL mixture and n = 10 in Fig. 5. It can be seen that the MSE
is somewhat sensitive to the value of λ. After experimenting
with various sets of hyper parameters, we observe that the
optimal value of λ seems to be mostly dependent only on
the number of sources d and the representation dimension
p. In fact, we have always fixed λ = 0.005 in the previous
experiments, which seemingly have worked well.

Fig. 4. Estimated components under PNL mixture with d = 5
and p = 8. The ground truth sources are plotted in solid lines
for comparison. Components that correspond to the sources are
labeled as IC1-IC5. Note that IC6-IC8 can be easily identified
as “noise components” as they have near zero variances.

Fig. 5. Average MSE vs. λ under PNL mixture.

4. DISCUSSION

The proposed method has the advantage of being conceptually
simple and easy to implement. It can successfully solve both
linear and various nonlinear BSS problems, without assuming
the nature of the mixture. Even in the situation where the num-
ber of the sources is not exactly known, the proposed method
may still recover the sources and allows for easy identification
of the noise components.

That said, we believe that there is much room for improve-
ment within the proposed framework. For instance, there
may be better choices of the regularizer for promoting inde-
pendence than the fourth order cumulant used in the current
work. Besides, the model selection procedure described in
Section 3.2 sometimes selects a degenerate solution from the
candidates. All those may be the starting points of the future
work.
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