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ABSTRACT

Acoustic model combination (AMOC) is an active research area.
Model combination techniques are critical for many automatic
speech recognition (ASR) scenarios, and provide frameworks to
combine diverse acoustic models to boost ASR performance. We
scope this work in the broad framework of AMOC, and present static
and dynamic state combinations of acoustic models. We motivate
and rationalize the benefits from our combination techniques, and
present many applications and extensions. We apply our work in the
context of combining a generic and a scenario-specific (dedicated)
acoustic model; we train the proposed model with an ASR objective
to best align with ASR performance. We conduct our experiments
on large-vocabulary ASR task with over 30k hours of training data.
Compared to generic model, we demonstrate a strong 6% word
error relative reduction (WERR) in average across a variety of tasks,
and specifically 25% and 8% WERR for far-field speaker and an
emerging car scenario.

Index Terms— LSTM, Model Combination, Digital Assistant,
Model Adaptation, Acoustic State Prediction

1. INTRODUCTION

Deep learning has been instrumental in bringing speech products to
mass markets. We are witnessing the creation of many on-device as
well as on-cloud speech applications that deliver strong ASR per-
formance. Deep learning also enabled digital personal assistants in
Cortana, Alexa, Google Home and Siri, that have become an impor-
tant resource for everyday use. Today we expect the speech products
to work well in not just controlled environments but also in acous-
tic scenarios including noise, far-field conditions, non-native speech,
kids, whisper, natural conversation, and side-speech etc. These ex-
pectations and the availability of massive training data and com-
puting power, offer many new opportunities and challenges in the
speech research.

The goal of any speech application is to produce the highest pos-
sible accuracy given reasonable constraints in computing power and
latency. Over the past years, speech researchers have developed a
variety of algorithms and architectures to learn speech models, as
well as, speech features that are robust to acoustic scenarios [1]. Re-
cently the deep long-short term memory (LSTM) models in [2, 3]
demonstrated further improvements over an earlier application of
deep learning in DNN models [4, 5, 6, 7, 8]. LSTM models explic-
itly control the memory of the network in terms of input and forget
gate modules, this provides a control over the information flow in
the network and alleviates the gradient vanishing problem associ-
ated with deep networks [9]. The newer advances in deep learning
also include end-to-end systems in [10, 11, 12, 13].

Besides speech features and model structures, SR systems also
leverage techniques in model or speaker adaptation [14, 15, 16, 17]
that personalize models for a specific scenario or speaker. Adap-
tation techniques provide significant value on top of speaker-
independent (SI) models. This study focuses on single microphone
but given multiple microphones, we can also apply a variety of
beamforming and stream combination techniques in [18, 19].

The scope of our work lies in the broad area of acoustic model
combination (AMOC). A number of AMOC techniques have been
developed for SR applications that show significant improvement in
accuracy [20]. The importance of AMOC is obvious from recent
speech benchmarks in [21] where most competing systems use a va-
riety of AMOC techniques. Besides speech, model combinations are
also critical in most other deep learning areas, including image-net
classification [22]. In our work, we propose static and dynamic com-
bination of acoustic model states and demonstrate significant accu-
racy improvements. The state combination of models [23] by itself
isn’t new but our precise contribution is to learn a state-dependent set
of weights in a data-driven framework that aligns with ASR training
criterion. These weights can be static, i.e. fixed for the models, or
dynamic, where the weights are obtained from a prediction model.
Besides presenting word error rate (WER) metrics, we also analyze
our approach and discuss interesting findings.

We present our work in the context of combining 2 acoustic
models (AM): (1) a generic AM, that’s trained to work very well
for a broad range of acoustic scenarios, (2) a dedicated model that’s
specifically trained for a far-field speaker scenario. Our objective
is to combine above 2 models such that the single combined model
shows strong gains for all the scenarios over the previous best re-
sults in that scenario. And more specifically we expect to broaden
the scope and accuracy of our acoustic models to diverse scenar-
ios. This is specially important for server applications, where many
speech developers can link to our cloud service, and expect robust
ASR performance despite their acoustic application environment,
audio processing pipeline, and speaker base etc. With a single com-
bined model, we can deliver on the expectations without asking de-
velopers about their evolving acoustic scenarios and applications.
Despite all the advances in computing resources, building a large
scale ASR model requires significant investments in experimenting,
training and testing. So with combined model we can focus our in-
vestments in building a single underlying model to serve most of our
customers.

The rest of this work is organized in following: we briefly re-
view a few model combination techniques relevant to our work in
Sec. 2. We propose static state prediction in Sec. 3, and follow up
with dynamic prediction in Sec. 4. We present our experiments and
results in Sec. 5, and focus on analysis and extensions of our work
in Sec. 5.1. We conclude our work in Sec. 6.
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2. ACOUSTIC MODEL COMBINATION

Given our focus on acoustic model combinations, we briefly discuss
a few relevant model combination techniques. These techniques may
have multiple objectives. A common goal is to build diverse mod-
els that do great in particular scenarios; we expect to train models
with complementary error patterns, that we can leverage and com-
bine. We can build models for a broad group of speakers, ex gender-
dependent models, and combine them. We can apply similar ratio-
nal and build models for native and non-native speakers of English.
We may also build diverse models from different speech features.
We can also train models for a variety of acoustic model states,
senones. Along with acoustic model, model combination can use
language models too. Besides the diversity in the training data and
algorithms, we can also develop model combination techniques that
include: (1) feature-level combination, where we concatenate or join
information from multiple speech features and train a single model,
(2) state combination, there we combine acoustic states information,
(3) confusion network combination (CNC) [24], hypothesis combi-
nation with ROVER [20] with confidence scores [25], and frame or
classifier-based system combinations in [26, 27].

Typically state and hypothesis combination demonstrate larger
gains [21]. We scope our work in the context of combining acous-
tic states that builds a single underlying acoustic model requiring a
single ASR engine instance. In contrast, combining ASR hypotheses
requires respective engine instances, along with developing tools and
infrastructure to execute those instances to combine the hypotheses
within reasonable computing and latency constraints. So compared
to ROVER-like techniques, our work significantly saves the comput-
ing and speech deployment resources.

3. STATIC STATE PREDICTION (SSP)

State combination of the acoustic models is an effective technique
in the broad scope of model combination. We apply our work to
LSTM-RNN models that consist of a few layers of LSTM cells [9]
along with a Softmax layer at top. The context-dependent tied tri-
phones constitute the acoustic states, and the model predicts a distri-
bution over the states for a given frame of speech features. Combin-
ing the models at the state level, i.e equivalently combining the pre-
dicted distributions for respective models has been applied before.
However, most previous work [23] used a fixed state-independent
weight for model combination, where the weight is tuned on the
task of interest. The specific contribution of our work is to better
analyze the combination weights and ingest new capabilities in the
state combination framework. In particular, we aspire to: (a) build
a data-driven framework for learning the state combination weights,
(b) use ASR criterion to learn the model weights to be best aligned
with ASR performance, (c) incorporate state-dependent capabilities
in the combination weights, (d) static as well as dynamic prediction
framework for the weights. We also take opportunities for deeper
analysis of our findings and accuracy results.

For our work, we also consider an effective baseline that com-
bines the model states with a weight of 0.5, i.e. equal weights for
the 2 models. We show interesting properties and trade-offs of the
baseline combination in Sec. 5, where we see gains on some tasks
but sub-optimal performance on other tasks. We take motivations
from the baseline, rationalize improvements and regressions, and
build our work to achieve near optimal performance for all scenarios
by embedding new intelligence in the state combination framework.
The baseline combination points to significant scope with better pre-
dicting the combination weights. We work on this motivation, and
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Fig. 1. Distribution of state-dependent combination weights α from
static state prediction.

propose to train the combination weights in the framework of the
ASR itself. We motivate a data-driven framework for learning the
combination weights and present static state prediction (SSP) and
dynamic state prediction (DSP) approaches. We focus on SSP in
this section.

The SSP approach is essentially identical to the DSP approach
demonstrated in Fig. 2, except that SSP excludes the prediction cell
for combination weights and reduces to time-independent combina-
tion weights α[k]. For SSP, we represent the combined model states
as:

S[k] = α[k] · S1[k] + (1− α[k]) · S2[k] (1)

where, the state combination weights α[k], where k indicates an
acoustic state, is state dependent with dimension as #states in the
acoustic model, and S1 and S2 are the state predictions from the 2
acoustic models. We initialize all α[k] to a fixed value, say i. We use
standard ASR training criterion to train state-dependent combination
weights. We also evaluated an alternative approach where we re-
strain α[k] to be identical for all states but found it to be sub-optimal
than state-dependent α[k]. The choice of the initialization parameter
i likely depends on the application scenario, and the nature of the
models. For our application we chose and verified i = 0.5 to work
well. We applied combination to the Softmax S1 and S2, as well as
the corresponding pre-Softmax values, and consistently found pre-
Softmax combination to work better and use that in our work.

3.1. State-independent combination weight as a special case of
state-dependent weights

We demonstrate that the state-independent combination weights,
i.e. with identical α[k] for all states, is a special case of the
state-dependent weights. We begin from the general case of state-
dependent model combination in eq. 1. We consider a special case
where for a particular speech frame, only one of the states, say k,
is dominant for both the models, and rest of states, i.e. S1[j] and
S2[j] are either 0 or significantly small for j 6= k. In that restricted
scenario, eq. 1 is equivalent to:

S = α[k]� S1 + (1− α[k])� S2, S1[j] ≈ 0, S2[j] ≈ 0 for j 6= k
(2)

Where � indicates element-wise product. The predicted α is iden-
tically α[k] for all states k in above state-independent combination
approach.

Next, in comparison to the baseline combination with identical
α for all acoustic states, SSP offers additional advantages. SSP train-
ing aligns with the ASR training objectives to learn state-dependent
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Fig. 2. A general framework for dynamic acoustic model combi-
nation. A small prediction model (combination cell) dynamically
evaluates the model combination weight αt[k] for time instant t and
acoustic state k. We can also train a time-independent α[k] for static
state prediction; it doesn’t require a prediction model.

combination weights. This allows SSP to best leverage the state clas-
sification boundaries from individual models. We plot a histogram
of the trained weights α in Fig. 1 and demonstrate that the training
criterion indeed converges to a state-dependent α. We also observed
that that the predicted α for states like “sil”, “noise” strongly fa-
vored the generic model. In our work, we trained the generic model
from a large corpus including mobile and close-talking data, so the
generic model better learns the classification for silence and noise.
In comparison, the dedicated model training predominantly consists
of far-field and noisy data, where the classification boundaries for si-
lence and noise are fuzzy. Overall, SSP learns a way to best leverage
the classification boundaries from the individual models.

4. DYNAMIC STATE PREDICTION (DSP)

In this section we extend our work on SSP in Sec. 3 to dynamic
state prediction (DSP). In SSP, we leveraged SR training criterion
and trained state-dependent combination weights. Although, SSP
provided strong gains in some scenario it’s still sub-optimal and we
seek opportunities to better leverage the task at hand. We realize that
audio from different acoustic conditions exhibit different character-
istics, therefore, static combination weights are likely sub-optimal.
We leverage scenario-dependent combination by dynamically pre-
dicting time and state-dependent combination weights αt[k] in:

St[k] = αt[k] · S1,t[k] + (1− αt[k]) · S2,t[k] (3)

Where, we use a prediction model to predict αt[k] at time instant t
and acoustic state k. We demonstrate this approach in Fig. 2. We
have flexibility to use a variety of prediction models in the DSP
framework. Our acoustic model consists of LSTM cells, so we nat-
urally chose 1-layer LSTM cell to model and predict αt[k]. Our
prediction model aligns well with the core ASR models; we reuse
SR features and ASR training criterion to predict αt[k].

We propose an extension of the DSP approach in Fig. 3. There
we concatenate the hidden layer outputs from the SR models, and
take that as an input for the prediction model. We base this work
on our understanding that in a deep network, the initial layers nor-
malize the features and make it robust across speakers and acoustic
environments. Whereas, the upper layers gradually learn decision
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Fig. 3. An extension of the dynamic acoustic prediction where the
input to the prediction model is obtained from the concatenation of
the model hidden states.

boundaries. We expect to test and improve the prediction perfor-
mance with inputs from the hidden layer activation. Furthermore,
the prediction model based on speech features doesn’t include any
information from the core ASR models; the proposed extension al-
lows us to incorporate some information from the individual ASR
models. We can also extend above to include features as well as
hidden layer information for the prediction model.

5. EXPERIMENTS AND RESULTS

We conducted our experiments on a large vocabulary speech recog-
nition task. We build a standard 6-layers unidirectional LSTM model
with cross-entropy (CE) [4] criterion from a large data corpus from
across Microsoft speech services in Xbox, Cortana, Conversation,
and Speaker with a total of approximately 20k hours of produc-
tion data. Subsequently we augment the data with noise and room
impulse response for a total of around 30k speech hours. We use
80-dim log-Mel features for model training, the corresponding time
window is 25-msec with 10-msec window shift. Our LSTM cells use
1024 memory units. We train our models to support near loss-less
decoding with frame-skips for LSTM model evaluation. Following
above, we build 2 acoustic models. We refer to the first acoustic
model (AM) as “Generic” model, it’s trained to handle a wide va-
riety of scenarios across multiple speech endpoints. We also build
a “dedicated” model for far-field Cortana Speaker scenario. Clearly
we expect the “dedicated” model too to work reasonably well for
most scenario with the strongest focus on improving Speaker sce-
nario. For DSP prediction, we used a 1-layer LSTM with 512 mem-
ory units, and project the output to the 9k acoustic states in our
model. We also tried a few advanced prediction models but the 1-
layer LSTM retained almost all of the gains and was yet small and
fast to train. We test our work on tasks across Cortana, Speaker,
Car and Conversation, with over 100k utterances in total. We use a
5-gram language model with vocabulary of over 1M words.

Our objective is to leverage above models and combine them
for: (a) the best overall performance from the combined model, (b)
minimize any regression such that individual tasks operate at close
to the best achievable accuracy from either of the 2 models. We
present the 2 baseline results in Table. 1. We note strong perfor-
mance for the generic model on a wide-variety of tasks, whereas,
the dedicated model shows significant improvement for Speaker but
it’s weaker for other scenarios. There, the SSP approach improves
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Table 1. Static state prediction for model combination.

Models Cortana Speaker Car Conversa- Avg.
[%] [%] [%] tion [%] [%]

Generic AM 11.8 8.2 14.2 21.4 13.89
Dedicated AM 15.4 6.0 16.3 35.7 18.35
Comb. w/ 0.5 11.6 6.2 14.0 23.3 13.78
SSP 11.5 7.0 13.9 21.7 13.53

Table 2. DSP for model combination. We present DSP flavors with
speech features in Fig. 2 as well as concatenated hidden activations
in Fig. 3 as input for the prediction model.

Models Cortana Speak- Car Conversa- Avg.
[%] er [%] [%] tion [%] [%]

Generic AM 11.8 8.2 14.2 21.4 13.89
Oracle (Generic
or Dedicated) 11.8 6.0 14.2 21.4 13.34
DSP-Features 11.7 6.0 13.9 21.4 13.26
DSP-H2 11.6 5.9 14.0 21.6 13.26
DSP-H4 11.7 6.0 14.1 21.6 13.35
DSP-H6 11.6 6.0 14.0 21.7 13.34
DSP-Features
+ Finetune 11.6 6.1 13.0 21.4 13.05
WERR over
Generic AM 1.8 25.2 8.0 -0.2 6.0

the average WER from 13.89% for generic model, and 13.78% for
the baseline combination with a fixed weight of 0.5, to 13.53%.
We note that compared to generic model, the baseline combination
improves some tasks but has significant regressions for Conversa-
tion task. Similarly, compared to dedicated AM, SSP regresses for
speaker task.

Above indicates that SSP by itself is insufficient at generaliz-
ing to diverse speech applications, and that the ideal combination
weights should also be a function of the task; this leads to the DSP
framework for state combination. We present DSP results in Table 2.
We also present a specific oracle result, where the WERs are the best
possible for a task from the 2 AMs. In Table 2, “DSP-Features” in-
dicates the DSP combination with speech features as input for the
prediction model, and “DSP-H2” indicates the flavor in Fig. 3 that
uses the hidden activations from the 2nd hidden layer (from bottom).
On average the “DSP-H2” is better than using activations from upper
layes in “DSP-H4” or “DSP-H6”, and is similar to that for “DSP-
Features”. These methods improve the previous best 13.53% SSP
WER in Table 1 to 13.26%. It’s also satisfying to note that the WERs
from the dynamic methods are better than the best WERs from the
2 individual models, as noted in the Oracle result. Furthermore, we
take the opportunity for additional improvements in the DSP frame-
work by finetuning the individual ASR models for a few training
epochs. This leads to the best DSP result, and pushes the WER from
13.89% for the generic model to 13.05%, achieving an overall 6%
WERR on average, and in particular 25% WERR for Speaker task,
and 8% WERR for Car.

We also evaluated ROVER for model hypotheses combination
but it regressed over individual best models; that’s likely due to wider
WER gap between the generic and dedicated model on most tasks.

Table 3. Expected cost for model combination techniques.

Models Computing Cost
Generic AM 1x
Comb. with individual recognition results 2x
(ex - ROVER [20])
Comb. with Static State Prediction (SSP) 1.2x
Comb. with Dynamic State Prediction (DSP) 1.24x

We note approximate computing costs in Table 3. Noting the
cost for generic AM as 1x, a ROVER-like approach that requires hy-
potheses from 2 models requires atleast 2x cost. The SSP and DSP
approaches require computing additional LSTM models but retain
the decoding cost in Generic AM. We find the computing cost for
SSP and DSP methods to be 1.2x and 1.24x, respectively. Com-
pared to ROVER-like techniques, our proposed approaches show
significant savings in computing cost.

5.1. Model Combination Applications, Analysis and Extensions

We presented our work in the context of developing and combin-
ing a dedicated Cortana speaker AM with a generic AM. We can
also apply our proposed approach in other scenarios: (a) improv-
ing the performance for kids from a kids-specific AM, (b) similar
to (a), improving performance for non-native English speakers, (c)
combining narrowband and wideband-specific AMs, (d) extending
to sequence criterion as training criterion, (e) speaker or environ-
ment adaptation by developing and finetuning a dedicated AM, (f)
improving the baseline model by training a model under the combi-
nation criterion to further minimize the loss metric.

We expect an adequate understanding of the application, nature
of the core AMs, and amount of training data etc. to best apply
our work. Our work purely lies in the scope of AM training, so it’s
expected to be useful in the context of combination techniques like
ROVER or re-ranking that can additionally leverage language model
information and ASR hypotheses. We are also extending our ap-
proach to combine 3 or more models. The current DSP work uses a
small prediction model; we are testing with prediction models that
are specific to the AMs, as well as expanding the prediction model to
simultaneously predict all combination weights. We are also apply-
ing our work to UK and Canadian English, and are seeing significant
gains.

6. CONCLUSION

In this work we presented static and dynamic state prediction for
acoustic model combination. We motivated a rational for state-
dependent combination weights that’s trained with an objective
aligned to ASR training. We expanded our work to dynamic predic-
tion by training a small prediction model to best learn and predict the
combination weights. We applied our techniques to large scale enUS
tasks and demonstrated an average 6% WERR over generic model
by combining it with dedicated Speaker model, and in pariticular
25% WERR for Speaker and 8% WERR for Car tasks. Our work led
to build a single underlying model to serve most of our customers.
We also discussed many extensions and applications of our work.

2785



7. REFERENCES

[1] Jinyu Li, Li Deng, Yifan Gong, and Reinhold Haeb-Umbach,
“An overview of noise-robust automatic speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 22, no. 4, pp. 745–777, 2014.

[2] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” in Proc. Interspeech, 2014, pp. 338–342.

[3] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recogni-
tion,” in Proc. Interspeech, 2015.

[4] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N Sainath, et al., “Deep neu-
ral networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal processing
magazine, vol. 29, no. 6, pp. 82–97, 2012.

[5] Michael L Seltzer, Dong Yu, and Yongqiang Wang, “An inves-
tigation of deep neural networks for noise robust speech recog-
nition,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 2013, pp.
7398–7402.

[6] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu,
Frank Seide, Michael L. Seltzer, Geoffrey Zweig, Xiaodong
He, Jason D. Williams, Yifan Gong, and Alex Acero, “Recent
advances in deep learning for speech research at microsoft,”
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 8604–8608, 2013.

[7] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition,” IEEE Signal Processing Magazine, 2012.

[8] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing,, vol. 20, no. 1, pp. 30–42, Jan. 2012.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] Hasim Sak, Matt Shannon, Kanishka Rao, and Françoise Bea-
ufays, “Recurrent neural aligner: An encoder-decoder neural
network model for sequence to sequence mapping,” in Proc. of
Interspeech, 2017.

[11] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prab-
havalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J
Weiss, Kanishka Rao, Katya Gonina, et al., “State-of-the-
art speech recognition with sequence-to-sequence models,” in
Proc. ICASSP, 2018.

[12] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in NIPS,
2015.

[13] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brake, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech
recognition,” CoRR, vol. abs/1508.04395, 2015.

[14] Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and Frank Seide,
“KL-divergence regularized deep neural network adaptation
for improved large vocabulary speech recognition,” in Proc.
ICASSP, 2013, pp. 7893–7897.

[15] J. Xue, J. Li, D. Yu, M. Seltzer, and Y. Gong, “Singular value
decomposition based low-footprint speaker adaptation and per-
sonalization for deep neural network,” in Proc. ICASSP, 2014,
pp. 6359 – 6363.

[16] K. Kumar, C. Liu, K. Yao, and Y. Gong, “Intermediate-layer
dnn adaptation for offine and session-based iterative speaker
adaptation,” in Interspeech, 2015.

[17] Y. Miao, H. Zhang, and F. Metze, “Towards speaker adaptive
training of deep neural network acoustic models,” 2014.

[18] Xiaofei Wang, Ruizhi Li, and Hynek Hermansky, “Stream at-
tention for distributed multi-microphone speech recognition,”
Proc. Interspeech 2018, pp. 3033–3037, 2018.
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