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ABSTRACT

We present a method for converting the voices between a set
of speakers. Our method is based on training multiple au-
toencoder paths, where there is a single speaker-independent
encoder and multiple speaker-dependent decoders. The au-
toencoders are trained with an addition of an adversarial loss
which is provided by an auxiliary classifier in order to guide
the output of the encoder to be speaker independent. The
training of the model is unsupervised in the sense that it does
not require collecting the same utterances from the speakers
nor does it require time aligning over phonemes. Due to the
use of a single encoder, our method can generalize to convert-
ing the voice of out-of-training speakers to speakers in the
training dataset. We present subjective tests corroborating the
performance of our method.

Index Terms— Voice conversion, autoencoders

1. INTRODUCTION

Speech signals contain information besides the uttered mes-
sage; among them are the speech characteristics that pertain
to the speaker. The problem of modifying the speech so that
it sounds as if it was uttered by another speaker is known
as voice conversion [1]. Voice conversion is usually done
by training a model that takes an input from a speaker and
transforms it so that it sounds like it was spoken by another
speaker. The training of the model might require parallel
data, or can be done using non-parallel data. Parallel data
refers to recording the same utterance from the speakers, and
time-aligning them through dynamic time warping. On the
other hand, non-parallel data refers to recordings from speak-
ers where they speak different utterances, and there is no re-
quired time-aligning of signals.

In this paper, we present a method for voice conversion
based on autoencoders trained on non-parallel data. An au-
toencoder is an artificial neural network used to learn a rep-
resentation (encoding) of a given dataset in an unsupervised
way [2]. This is done by training an encoder network and
a decoder network jointly, where the encoder takes an input
and gives out a representation (code), and the decoder out-

puts a reconstruction of the input based on this representation.
The parameters of the encoder and the decoder networks are
trained so that the reconstruction matches the input well with
respect to a chosen criterion. The typical scenario where au-
toencoders are used is to learn an efficient representation of
the data by constraining representation to be smaller com-
pared to the size of the input [2].

Unlike the wide-spread use case of autoencoders, in this
work, we use the autoencoder architecture not to find a com-
pact representation of the input, but to learn a representation
of the input speech that is independent across speakers while
still yielding a good reconstruction of the input. For this, we
use one encoder, multiple decoders (one for each speaker)
and one classifier. The encoder output is guided to a speaker-
independent representation in training time by an adversarial
loss provided by the classifier. This classifier network takes as
input the output of the encoder (the representation) and tries
to identify the speaker. The encoder-decoder pairs are trained
to minimize the reconstruction error while not enabling the
classifier to get a good classification accuracy. In inference
time, for performing voice conversion, we feed the speech in-
put to the encoder, and use the decoder of the target speaker.
Because we have a single encoder for all speakers, our algo-
rithm can generalize to converting voices of speakers outside
the training set to the speakers’ in the training set.

2. RELATED WORK

Voice conversion algorithms can be divided into two with re-
spect to datasets they require: algorithms which require par-
allel datasets and the ones that work on non-parallel datasets.

On the side of algorithms based on parallel datasets, the
authors of [3] present a method that models the spectral enve-
lope of speech signals by Gaussian mixture models and then
fits a conversion function between the source and the target
spectral envelops using time-aligned utterances from the two.
Similarly, the authors of [4] propose a conversion method
based on the maximum-likelihood estimation of the spectral
parameter trajectory instead of working on snapshots.

On the side of parallel-data-free methods, recent work
mostly make use of neural networks. The authors of [5, 6]
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proposed algorithms to perform domain transfer on images
using Generative Adversarial Networks (GANs) [7]. In or-
der to transfer each sample across domains while preserving
the contents of the sample, the authors introduce a new term
in the loss function called the cycle loss. This loss tries to
enforce that the sample matches the input after it is trans-
ferred to the new domain and then back to the old domain.
Voice conversion can be seen as an instance of domain trans-
fer, where the domains correspond to the speakers. The au-
thors of [8] propose an algorithm to do voice conversion using
non-parallel data through the aforementioned GAN architec-
ture trained with the cycle loss.

The closest work to our approach is [9] where the authors
propose using adversarially trained autoencoders for translat-
ing music across domains (instruments, genres, and styles).
The authors propose using a universal encoder, and multi-
ple decoders, one for each domain. The multiple autoencoder
paths are trained with an adversarial classification loss. Our
work differs from this related work in the problem domain,
the choice of the features tailored for voice conversion on
which the loss function is defined, and the network design
which is simpler for computationally faster inference.

3. ADVERSARIALLY-TRAINED AUTOENCODERS
FOR VOICE CONVERSION

Let n denote the number of speakers whose voices we want
to convert to each other, and let L denote the set of ids of
the speakers. We assume a training dataset consisting of m
samples S = {(xi, li)}mi=1, where xi is the ith utterance, and
li ∈ L is the speaker id for the ith utterance.

We construct one encoder E and n decoders D =
{Di}i∈L, one for each speaker, and a classifier C that is
going to be used for defining the adversarial loss. Given a re-
construction loss function fr and a classification loss function
fc, the training is done to optimize

min
E,D

max
C

m∑
i=1

[fr(xi, Dli(E(xi)))− fc(li, C(E(xi)))] . (1)

Example choices for the loss functions are an `p-norm for
the reconstruction loss, that is, fr(x, y) = ‖x − y‖p, and
the cross-entropy loss for the classification, that is, fc(l, y) =
log
(
eyl/

∑
i∈L e

yi
)
.

The intuition behind this particular optimization problem
for training is that we want the encoder to learn an embedding
that does not carry information with respect to the speaker
while still enabling the relevant decoder to reconstruct the
speech. This is facilitated by training the encoder-decoder
to result in a large error in the classifier.

There is another way to interpret this cost function in
terms of finding representations that have small mutual in-
formation with the speaker label. If the bottleneck of the
autoencoder has no mutual information with the label of
the speaker, it means that all the information relevant to the

x encoder decoder l

classifier

x̂

l̂ fc(l, ·)

fr(x, ·)

(a) Training time

x encoder decoder l′ x̂

(b) Inference time

Fig. 1. Our architecture consists of multiple autoencoder
paths, where there is a single encoder and multiple decoders,
one for each speaker. The classifier takes as input the output
of the encoder, and it provides the encoder an adversarial loss
to guide the representation to be independent of the speaker.

speaker has been stripped off the input. So it would make
sense to explicitly minimize this mutual information term as

min
E,D

E [fr(X,DL(E(X)))] + I(L;E(X)). (2)

However, it is hard to calculate and minimize the mutual
information. Recently, a lower-bound based on deep neural
networks to approximate the mutual information has been
proposed by the authors of [10]. The following proposi-
tion shows that, similarly, the classification accuracy can be
viewed as a bound on the mutual information.

Proposition 1 Let L be the input id of the speaker, X be the
speech sample, Z be the representation of X given by the
encoder, and L̂ be the estimation of speaker id based on Z.
Let pe = P (L 6= L̂), and p∗e = minf P (L 6= f(Z)); then

H(L)− h(pe)− pe log(|L| − 1)

≤ I(L;Z) ≤ H(L) + log2(1− p∗e).
(3)

The lower bound to the mutual comes from Fano’s in-
equality, and the upper bound comes from manipulating defi-
nition of the best classifier; due to space constraints we omit
the proof of the proposition. As can be seen from the propo-
sition, the error probability of any classifier provides a lower
bound, and the error probability of the best classifier provides
an upper bound on the mutual information. Hence, in the cost
function (1), the classifier is trained to maximize this lower-
bound on the mutual information to get an approximation to
it. Then, the encoder-decoder pair is trained to minimize this
approximation to the mutual information along with the the
reconstruction loss. If the neural network were able to rep-
resent the best classifier, and the optimization algorithm were
able to find it, then we would be able to get an upper bound on
the mutual information as well. Figure 2 shows the lower and
upper bounds for the 4 speakers chosen uniformly at random.
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Fig. 2. An example for the bounds on the mutual informa-
tion given in equation (3). Speaker id L chosen uniformly
at random from a set of 4 speakers. The curve fl(p) =
H(L)− h(p)− p log(|L| − 1) denotes the lower bound, and
the curve fu(p) = H(L) + log2(1 − p) denotes the upper
bound on the mutual information I(L, Y ).
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Fig. 3. Architectures of the encoder, decoders and classifier.
Each block represents convolution followed by instance nor-
malization an ReLU. The convolution kernel size is denoted
by k, and the number of output channels is denoted by c.

4. EXPERIMENTS

As numerical experiments we select five speakers, two female
(denoted with F1 and F2) and three male (denoted with M1,
M2 and MX), from English multi-speaker corpus of CSTR
voice cloning toolkit [11]. We use four of these speakers (F1,
F2, M1, and M2) in training the neural networks, and set aside
one of the speakers (MX) for evaluating the performance for
conversion of voice from out-of-training speakers.

We train multiple autoencoder paths on the mel-frequency
spectrogram magnitudes of speech. The parameters for the
spectrograms are as follows: the number of FFT bins is 1024,
the hop length between consecutive windows is 256, number
of mel-spaced filters is 128, and minimum and maximum fre-
quencies of input signal considered are 40 Hz and 8000 Hz
respectively. The reconstruction loss, fr, is chosen to be `1
loss, and the classification loss, fc, is chosen to be the cross-
entropy loss. The encoder, decoder and classifier are all three
layer convolutional neural networks, where the convolutions
are 1-dimensional have kernel size of 3. The number of hid-

target speaker

F1 F2 M1 M2

so
ur

ce
sp

ea
ke

r F1 − 0.500± 0.224 0.825± 0.069 0.800± 0.080

F2 0.567± 0.128 − 0.756± 0.091 0.750± 0.087

M1 0.846± 0.063 0.818± 0.074 − 0.776± 0.064

M2 0.914± 0.067 0.856± 0.074 0.675± 0.105 −

MX 0.867± 0.088 0.900± 0.072 0.607± 0.083 0.767± 0.089

Table 1. AB test results.

target speaker

F1 F2 M1 M2

so
ur

ce
sp

ea
ke

r F1 − 0.651± 0.103 0.872± 0.069 0.868± 0.110

F2 0.650± 0.151 − 0.912± 0.069 0.860± 0.075

M1 0.855± 0.081 0.826± 0.082 − 0.776± 0.069

M2 0.750± 0.137 0.840± 0.077 0.634± 0.081 −

MX 0.776± 0.110 0.833± 0.063 0.653± 0.064 0.800± 0.179

Table 2. ABX test results.

den channels for each network is 256, and the representation
size (code length) is chosen to be 128. We use instance nor-
malization [12] before each non-linearity, and use ReLU as
the activation functions. Fig. 3 shows an illustration of the
architecture. To complete the loop on voice conversion, after
the conversion of spectrograms using the neural network, we
use Griffin-Lim’s algorithm [13] to construct the audio signal
similar to the way Tacotron [14] does.

As an example for converted voice spectrogram, we look
at converting an input sample from one of the male speak-
ers (M2) to the voice of one of the female speakers (F1).
Fig. 4 shows the input spectrogram, spectrogram of the recon-
structed speech and the spectrogram after voice conversion.
As can be seen from the figure, the reconstruction resembles
the input spectrogram, and the spectrogram of the converted
voice has components at higher frequencies compared to the
input’s which aligns with the target speaker’s voice character-
istics.

In order to get quantitative performance metrics, we con-
ducted subjective tests on Amazon Mechanical Turk [15]. We
report the results of three types of tests: (1) AB testing, (2)
ABX testing, and (3) mean opinion scores (MOS).

target speaker

F1 F2 M1 M2

so
ur

ce
sp

ea
ke

r F1 − 2.371± 0.232 2.312± 0.195 2.138± 0.192

F2 1.850± 0.205 − 1.712± 0.180 1.750± 0.160

M1 1.588± 0.160 1.754± 0.126 − 2.327± 0.201

M2 2.140± 0.159 2.020± 0.164 2.689± 0.218 −

MX 2.670± 0.182 2.422± 0.190 2.650± 0.199 2.577± 0.19

Table 3. MOS.
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(a) Input (b) Reconstruction (c) Conversion

Fig. 4. Spectrograms of input speech, reconstruction and voice conversion. Input is an utterance by a male speaker and the
target is a female speaker who has a higher pitched voice compared to the input speaker. We observe that the converted voice
has components at higher frequencies compared to the input which aligns with the characteristics of the target speaker.

The first of the subjective experiments is AB tests. In
these tests, the listeners are given two utterances to compare.
The first sample (A) is a recording by either the source or
the target speaker chosen uniformly at random, and the sec-
ond one (B) is an utterance converted to the voice of the tar-
get speaker from the source. In order to not bias the listener
based on the contents of the utterances, we use different sen-
tences for the given two samples. The subjects are asked to
identify if the two samples are spoken by the same speaker
or not. We call it a success if (1) the first sample (A) was a
recording from the target and the subject said the two sam-
ples were from the same speaker, or (2) the first sample (A)
was a recording from the source and the subject said the two
samples were from different speakers.

Table 1 shows the frequency of success in the experiments
along with 95% confidence intervals. As can be seen from the
table, our algorithm achieves to change the source voice in the
correct direction. In particular, the conversion of voice be-
tween speakers of different genders seem to be consistently
perceived successfully by the subjects. An interesting ob-
servation is that converting the voice of an out-of-training
speaker (given in the last row of the table) performs similarly
with in-training speakers, which means that the encoder can
generalize to out-of-training speakers.

The second subjective experiment is ABX tests. Here,
the listeners are given three samples. The first two samples
(A and B) are recordings from the source and target speakers
(order is randomized), and the third sample (X) is an utter-
ance converted from the source speaker to the voice of the
target speaker. As in AB tests, we use different sentences for
the given three samples in order not to bias the listener based
on the contents of the utterances. The subjects are asked to
choose which of the first two samples’ voice (A’s or B’s) is
the third sample’s voice is closer to. We call it a success if the
subject chooses the sample recorded from the target speaker.

Table 2 shows the frequency of success in the experiments
along with 95% confidence intervals. Again, our algorithm
changes the source voice in the correct direction, in particular,
for converting between speakers with different genders. Sim-

ilar to AB tests, the voice of an out-of-training speaker (last
row of the table) performs similarly with in-training speakers.

The last of the subjective tests is MOS. Here, the sub-
jects were given converted speech samples, and were asked
to rate the quality of the sample. The quality scale used was
Absolute Category Rating (ACR) [16], that is, integers with
correspondences: 1-bad, 2-poor, 3-fair, 4-good, 5-excellent.

Table 3 shows the MOS along with 95% confidence in-
tervals. Even though, our algorithm changes the source voice
in the correct direction as was shown with the AB and ABX
tests, the converted sample has artifacts that a listener can no-
tice as is evident from the MOS. A large part of it is because
small inconsistencies in the spectrogram magnitudes can re-
sult in significant artifacts in the output when Griffin-Lim’s
algorithm is used. This behavior was also identified by the
authors of [17] who propose training a separate deep neu-
ral network that takes a spectrogram magnitude and outputs
audio signals to reduce artifacts. Using such more elaborate
approaches to reduce artifacts is part of ongoing research.

5. DISCUSSION

We presented a method for voice conversion using neural net-
works trained on non-parallel data. The method is based on
an training multiple autoencoder paths where there is a single
speaker-independent encoder and multiple speaker-dependent
decoders. The autoencoder paths are trained to minimize the
reconstruction error and an adversarial cost that tries to make
the output of the encoder carry no information with respect to
the speaker id. The training is unsupervised in the sense that
we do not require parallel speech dataset from the speakers.
We evaluated our method on a subset of speakers from the
VCTK dataset. Qualitatively, we observe that the converted
spectrograms carry characteristics of the spectrograms of the
target speaker. The results of subjective tests corroborate our
algorithm’s voice conversion performance. Although our al-
gorithm can convert the voice of the source speaker in the
direction of the target, we observe that reconstructed audio
has some artifacts. Reducing these artifacts is ongoing work.
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