
FULLY DATA-DRIVEN CONVOLUTIONAL FILTERS WITH DEEP LEARNING MODELS
FOR EPILEPTIC SPIKE DETECTION

Kosuke Fukumori ⋆ Hoang Thien Thu Nguyen † Noboru Yoshida ‡ Toshihisa Tanaka ⋆§¶

⋆ Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology
2–14–16, Nakacho, Koganei-shi, Tokyo 184–8588, Japan

† Department of Biomedical Engineering, International University, VNU-HCMC
Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
‡ Department of Pediatrics, Juntendo University Nerima Hospital

3–1–10, Takanodai, Nerima-ku, Tokyo 177–8521, Japan
§ Rhythm-Based Brain Information Processing Unit, RIKEN CBS

2–1, Hirosawa, Wako-shi, Saitama 351–0198, Japan
¶ Tensor Learning Unit, RIKEN AIP

1–4–1, Nihonbashi, Chuo-ku, Tokyo 103–0027, Japan

ABSTRACT

Epilepsy is a chronic disorder that causes unprovoked, recurrent-
seizures. Characteristic spikes are often observed in the electroen-
cephalogram (EEG) of epileptic patients in order to diagnose the
disorder. Several methods have been investigated to automatically
detect such spikes. The most common methods employ sub-band
decomposition with discrete wavelet transform (DWT) or other fil-
ters to preprocess the EEG data before feeding it into a machine
learning model. This paper introduces a fully data-driven method
that automatically determines EEG frequency bands of interest. The
raw signal is fed into a convolutional layer to detect suitable fre-
quency bands, followed by a feedforward convolutional neural net-
work (CNN) model or recurrent neural network (RNN) models for
epileptic spike and non-spike classification. Fitting data of six pa-
tients, annotated by an epilepsy specialist, resulted in a convolutional
layer with a frequency characteristic similar to bandpass filters. This
result strongly justifies limiting the bandwidth of a signal, as done
in previous studies. Moreover, results of the cross-subject validation
indicate that a classical support vector machine with fixed prepro-
cessing achieves comparable performance in the classification with
fully data-driven models.

Index Terms— epilepsy, spike detection, data-driven prepro-
cessing, deep neural networks, electroencephalogram (EEG)

1. INTRODUCTION

Epilepsy is a complex neurological disorder that is common in early
childhood, and can lead to an adverse impact on an individual’s cog-
nitive functions. Although a single cause of epilepsy has not yet been
discovered, an early diagnosis can help patients to access appropriate
support and significantly improve their quality of life. To diagnose
epilepsy, a patient’s seizure symptoms are important; however, it is
often difficult to determine such symptoms. In addition, diagnosis of
the type of epilepsy syndrome is critical for medical treatment.

Measuring and analyzing electroencephalogram (EEG) are
essential steps to diagnose epilepsy. Paroxysmal spikes are fre-
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quently recorded in the EEG of epileptic patients who do not have
seizures [1]. These spikes are important bio-markers in diagnosing
epilepsy. However, due to the lack of highly skilled profession-
als and long-time EEG recordings, manual spike detection is often
time-consuming and insufficient. Hence, autonomous detection has
become powerful and relevant in solving those problems. Recently,
machine learning methods—such as support vector machine (SVM),
random forest (RF), and convolutional neural network (CNN)—for
automatic spike detection have gradually gained in popularity and
usage [2–5].

To exploit machine learning-based methods, preprocessing and
feature extraction are rather crucial. A majority of the methods de-
compose EEG signals into the standard clinical bands of interest:
gamma, beta, alpha, theta, and delta [6]. Methods using discrete
wavelet transform (DWT) or a bank of filters belong to this category.
The subband or narrowband signals are then fed into machine learn-
ing. However, with different methods or different goals of detection,
the selection of frequency bands of interest varies. For example,
while many neurologists prefer the frequency range of 1 to 30 Hz [7]
for detection of paroxysmal spikes, some machine learning methods
use the frequency range of 0.4 to 60 Hz [6], and some select the
range of 1 to 70 Hz for feature extraction before training [8]. Choos-
ing a wide frequency range may deteriorate detectability, or require
better models for spike classification. Otherwise, an excessively nar-
row frequency band of interest may lead to lack of information for
training data. Therefore, extracting appropriate bands of interest dur-
ing preprocessing is vital, as it can help the machine learning model
to train more easily without the need for more signal processing or
feature selection.

In this study, we hypothesize that such frequency bands of in-
terest can be estimated through annotated data using machine learn-
ing techniques. To this end, we propose a fully data-driven method,
where the raw signal is fed into a convolutional layer to extract the
band of interest without preprocessing, followed by a feedforward
CNN model or RNN model for epileptic spike and non-spike clas-
sification. The result is compared to that of the machine learning
method using DWT for EEG subbands.
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2. RELATED WORK

Recently, many researches that study EEG epilepsy have applied
DWT decomposition methods [9–11]. Other, types of filter methods
(such as time-frequency domain) [12,13], or other wavelet transform
methods [11, 14] in a preprocessing stage. However, the parameter
selection for the range of filters is empirically given.

In [8], in order to detect the epilepsy spike, the researchers use
a bandpass filter of 1–70 Hz as a preprocessing method. Then, they
employ peak detection by a numerical classification technique as a
feature extraction to put into the classifier. In [15], the method also
applies a band-pass filter in the range of 0.5–70 Hz for filter and then
implements the energy of the wavelet transform and wavelet packet
methods for classifying an epileptic spike. Another work [6] uses
DWT decomposition to select the frequency range from the delta
band to the gamma band (0.4–60 Hz).

Meanwhile, other studies prefer shorter bandpass filter ranges
for preprocessing. In [16], a bandpass filter range of 0.53–40 Hz
is applied, and then the discrete Fourier transform is used to ex-
tract features for the decision tree classifier. Similarly, [17] also
used this range of filter, but with the DWT decomposition method.
The method given by Srinivasan et al. [18] applies the filter range
of 0.15–36 Hz before classifying the epileptic and non-epileptic data
segments. Similarly, in [19, 20], their methods implement DWT de-
composition with Daubechies 4 (DB4) to extract the EEG frequency
bands from 4–32 Hz.

In addition, both [21] and [22] use DWT decomposition corre-
sponding with a range of 3 and 25 Hz. In [22], they make feature
selections from the raw signal of frequency bands of delta (0.5–4
Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–25 Hz); there-
after they employ the holdout technique and k-fold cross validation,
passing into many different classifier models for distinguishing the
seizure and non-seizure EEG records.

In these studies on the classification or detection of epilepsy,
DWT decomposition and other filter methods are effective. How-
ever, the selections of filter range are set empirically in different
studies. This motivates us to identify filter parameters from data.

3. METHOD

3.1. Dataset

We collected EEG records of six patients with Benign Epilepsy with
Centro-Temporal Spikes (BECTS) [23]. The age at examination
ranged from 5.7 to 10.6 years. They were two male and four fe-
male patients. The data was taken with conventional 10-20 methods
using the Nihon Koden EEG-1200 system. The sampling frequency
was 500 Hz for each channel. This dataset was recorded and ana-
lyzed under approval from the Juntendo University Hospital Ethics
Committee and the Tokyo University of Agriculture and Technology
Ethics Committee.

First, an epilepsy specialist (pediatrician) selected a focal chan-
nel that is associated with the origin of the epileptic discharge. Typ-
ically, one EEG dataset may contain multiple focal channels, and
the specialist selected the most intense channel as the focal channel.
Then, peaks of each channel’s waveform from the recording signals
were detected by PeakUtils [24]. Second, the specialist annotated
each peak as either a paroximal discharge (spike or spike-and-wave)
or an artifact. Fig. 1 illustrates an example of typical waveforms.
Waveforms are normalized at every channel before all processing.
Then, a 1-s epoch is extracted, including 300 ms before and 700
ms after every detected peak. It must be noted that each epoch rep-

Table 1. Labeled data information

Patient Age of Sex
Number of Number of

years paroxysmal artifactsdischarges
1 7.0 Female 178 424
2 6.8 Male 629 263
3 5.7 Male 580 240
4 10.1 Female 461 236
5 10.6 Female 321 188
6 6.5 Female 728 939

Total 2897 2290

0
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Peak point

300 ms 700 ms

(a) A paroximal discharge

0

500 ms

50 V

Peak point

300 ms 700 ms

(b) An artifact

Fig. 1. Typical waveforms of detected peaks in a 1-s epoch.

resents one candidate spike. Table 1 represents the annotated data
information.

3.2. Preprocessing and subband decomopsition

In this paper, we consider two models as shown in Fig. 2. The first
model uses a predefined preprocessor, as shown in Fig. 2(a), which
considers several previously employed methods. The second model
is data-driven, where the parameters in the preprocessor are searched
on the basis of the data.

3.2.1. Fixed approach

The first approach is to adopt two steps of preprocessing for each
epoch. First, a zero-phase Butterworth infinite impulse response fil-
ter (IIR filter) is applied. The signal is filtered by a bandpass filter
with a frequency of 1–30 Hz. The high-pass filter of 1 Hz plays the
role of eliminating all the low frequency components such as breath
or eye movement, and the low-pass filter of 30 Hz helps to meet
the goal of reducing noise in the EEG recording. Further, DWT
is used for decomposition to extract the frequency subbands of an
EEG. The mother wavelet in this study is the Daubechies wavelet of
order 4 (DB4), which is said to be appropriate for analyzing EEG
signals [25, 26]. The input filtered signal is decomposed to six de-
tailed levels and one approximation levels. The coefficient level D6,
D5, D4 are used for representing the frequency band of the theta
band (4–8 Hz), the alpha band (8–16 Hz), the beta band (16–32 Hz),
respectively [6]. The detailed coefficient of D1, D2, and D3 are elim-
inated because the frequency ranges of these bands are considered as
noise.

3.2.2. Fully data-driven approach

Subband decomposition with DWT, described in Section 3.2.1 can
be regarded as a filterbank comprising three finite impulse response
filters. In this approach, we build a model that learns the coefficients
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Fig. 2. The model diagrams.

of these filters. In other words, a simple convolution layer, called
the primary convolution layer, is placed instead of the fixed subband
filters, as illustrated in Fig. 2(b). The underlying idea behind the pri-
mary convolution layer is to estimate frequency bands of interest by
learning data. The number of filters and the filter size of the convo-
lution layer of the proposed method are set to 3 and 64, respectively.
Therefore, the features size of each epoch would be 500× 3.

The learning step is roughly divided into the following two parts:

1. Update only the coefficients of the primary convolutional
layer.

2. Update all coefficients of the main layers of the “Machine
Learning Model” in Fig. 2(b).

The first step assists the learning of the filter coefficients in the added
convolutional layer to extract the effective frequency bands from the
raw signal in a stable manner, without the influence of the learning
of the following network. Then, in the next step, the main layers are
tuned to extract the hidden features in the signal.

3.3. Machine learning models

In this paper, SVM, RF, Long Short-Term Memory (LSTM) [27],
Gated Recurrent Unit (GRU) [28], and CNN are adopted as the ma-
chine learning models depicted in Fig. 2. SVM and RF are either
combined with the traditional preprocessing or not combined in any
preprocessing. Further, LSTM, GRU and CNN are combined with
either the traditional preprocessing or the proposed method.

Each parameter of SVM and RF is tuned, as shown in Table 2,
by grid search. For adjusting the grid search, the F1-score is used
as the ranking score and the five-fold cross validation with two sub-
sets is used. The model architectures of LSTM, GRU and CNN are
depicted in Fig. 3. For the generation of initial weights of these mod-
els, the He initializer [29] is used for layers that employ the Rectified
Linear Unit (ReLU) as the activation function, and the Xavier initial-
izer [30] is used for other layers.

4. EXPERIMET

In order to verify the effectiveness of the proposed method, an ex-
periment is presented by using surface EEGs obtained from BECTS
patients. A peak contained in the EEG is classified as a paroximal
discharge or an artifact. In this experiment, SVM using RBF-kernel,
RF (for the fixed approach), GRU, LSTM, and CNN (for both the
fixed and data-driven approaches) are used as classification models.

Table 2. Parameters to be tuned by grid search
Model Parameter Range

SVM
Kernel precision γ

1E-4, 1E-3, 1E-2,
1E-1, 1E+0, 1E+1

Trade-off parameter C 1E-4, 1E-3, 1E-2,
1E-1, 1E+0, 1E+1

RF Number of trees Ntree
5, 10, 20, 30,
50, 100, 300

Model output

Convolution 1×16, output: 500×16

Activation: ReLU

Input: 500×3

MaxPool 1×4, output: 125×16

Activation: Linear

Convolution 1×16, output: 125×16

Activation: ReLU

MaxPool 1×4, output: 32×16

Activation: Linear

Convolution 1×16, output: 32×16

Activation: ReLU

MaxPool 1×4, output: 8×16

Activation: Linear

Convolution 1×16, output: 8×16

Activation: ReLU

MaxPool 1×4, output: 2×16

Activation: Linear

Fully Connected, output: 1

Activation: Sigmoid

Model output

Reshape, output: 50×30

Input: 500×3

LSTM/GRU, output: 50×100

Activation: tanh

LSTM/GRU, output: 50×100

Activation: tanh

LSTM/GRU, output: 50×100

Activation: tanh

LSTM/GRU, output: 1×100

Activation: tanh

Fully Connected, output: 1

Activation: Sigmoid

(a) Architecture for LSTM and GRU
models

Model output

Convolution 1×16, output: 500×16

Activation: ReLU

Input: 500×3

MaxPool 1×4, output: 125×16

Activation: Linear

Convolution 1×16, output: 125×16

Activation: ReLU

MaxPool 1×4, output: 32×16

Activation: Linear

Convolution 1×16, output: 32×16

Activation: ReLU

MaxPool 1×4, output: 8×16

Activation: Linear

Convolution 1×16, output: 8×16

Activation: ReLU

MaxPool 1×4, output: 2×16

Activation: Linear

Fully Connected, output: 1

Activation: Sigmoid

Model output

Reshape, output: 50×30

Input: 500×3

LSTM/GRU, output: 50×100

Activation: tanh

LSTM/GRU, output: 50×100

Activation: tanh
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Activation: Sigmoid

(b) Architecture for CNN model

Fig. 3. The model architectures. The input is three signals decom-
posed by DWT or the primary convolutional layer.

As a comparison target, raw signals to which bandpass filters and
DWT are applied are used as inputs to these models.

Inter-subject validation is conducted with five patients as a train-
set and another one as a test-set in all combinations. To evaluate the
model, the area under the curve (AUC) is used. AUC is the area of
the curve drawn by the false positive rate (FPR) and the true positive
rate (TPR) when the discrimination threshold is changed, and are
calculated in the following manner:

FPR =
FP

FP + TN
,

TPR =
TP

TP + FN
,

where TP, FP, FN, and TN are the numbers of true positive, false
positive, false negative, and true negative, respectively. In particu-
lar, for the evaluations of LSTM, GRU, and CNN, a mean AUC (by
taking an average over 30 independent realizations) is adopted since
the initial values affect the learning. In addition, the spectrum of the
filter of the primary convolutional layer is analyzed after learning.
The spectrum of each frequency is the mean of 30 independent runs
and three filters.
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Table 3. AUCs (mean ± STD of 30 independent runs at LSTM, GRU, and CNN) of each compared method.
Model Bandpass Feature Patients used as train-set

Filter [Hz] extraction 1, 2, 3, 4 and 5 1, 2, 3, 4 and 6 1, 2, 3, 5 and 6 1, 2, 4, 5 and 6 1, 3, 4, 5 and 6 2, 3, 4, 5 and 6
SVM 1–30 DWT 0.967 0.896 0.923 0.880 0.890 0.717
RF 1–30 DWT 0.964 0.914 0.925 0.940 0.887 0.833

SVM None 0.857 0.866 0.594 0.203 0.582 0.620
RF None 0.953 0.873 0.660 0.375 0.793 0.669

LSTM 1–30 DWT 0.942 ± 9.25E-03 0.889 ± 7.23E-03 0.841 ± 1.42E-02 0.842 ± 3.51E-02 0.792 ± 6.87E-02 0.768 ± 1.78E-02
GRU 1–30 DWT 0.948 ± 5.61E-03 0.891 ± 6.82E-03 0.846 ± 1.54E-02 0.866 ± 1.61E-02 0.873 ± 1.86E-02 0.492 ± 2.14E-02
CNN 1–30 DWT 0.942 ± 6.65E-03 0.894 ± 1.05E-02 0.885 ± 1.42E-02 0.869 ± 1.33E-02 0.905 ± 1.52E-02 0.785 ± 1.69E-02

LSTM Primary conv. layer 0.945 ± 6.37E-03 0.844 ± 2.85E-02 0.866 ± 1.63E-02 0.672 ± 4.56E-02 0.893 ± 1.73E-02 0.779 ± 3.44E-02
GRU Primary conv. layer 0.943 ± 6.27E-03 0.770 ± 8.50E-02 0.895 ± 1.23E-02 0.709 ± 3.44E-02 0.901 ± 9.75E-03 0.787 ± 2.55E-02
CNN Primary conv. layer 0.961 ± 9.12E-03 0.896 ± 1.24E-02 0.771 ± 7.47E-02 0.554 ± 3.90E-02 0.847 ± 2.32E-02 0.751 ± 1.92E-02
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Fig. 4. Mean spectrums of the filters in the primary convolutional layer
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Fig. 5. An example of predictions by CNN with the proposed method. Vertical bars indicate the peaks detected by PeakUtils [24]. The top
markers (circles and triangles) represent the results of the peak estimation by CNN. The bottom markers (horizontal short bars) represent the
failures of the prediction.

5. RESULTS AND DISCUSSION

5.1. Results

Table 3 represents the results for each model and method. Fig. 4
illustrates the mean spectrums of the filters in the proposed method
when learned by Patients 1, 2, 3, 4, and 5. These spectrums are the
means of both the number of trials and the three filters. It is evident
from Table 3 that the AUC of the proposed method achieves almost
comparable AUC to that achieved in the traditional preprocessing.
In addition, it is evident from Fig. 4 that the filters of the proposed
method emphasize the lower frequency band (approximately 8–16
Hz). Therefore, the traditional method focused manually on the low
frequency band, but it can be said that the proposed method auto-
matically extracts this frequency band. Fig. 5 provides an example
of predictions by CNN with the primary convolutional layer.

5.2. Discussion

This paper established a fully data-driven method which automati-
cally determines EEG frequency bands of interest. As a result of
machine learning with annotated data, the average amplitude spectra
of the primary convolutional layers clearly showed a band-limited
nature. This strongly supports bandpass filtering or subband decom-
position, which have typically been done in lots of previous works.
Moreover, the resulting narrowband is covered by bandwidths that
are used in the literature and by epilepsy specialists. Further, the
traditional classifiers (SVM and RF) with prefixed preprocessing
(<30 Hz) achieved comparable scores in classification with those
that were obtained with the fully data-driven approaches.
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