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ABSTRACT

Diversity plays a vital role in many text generating applications. In
recent years, Conditional Variational Auto Encoders (CVAE) have
shown promising performances for this task. However, they often
encounter the so called KL-Vanishing problem. Pervious works use
heuristic methods to avoid KL-vanishing, but it is hard to find an
appropriate degree to which these methods should be applied. In
this paper, we propose an explicit optimizing objective function to
guide the encoder towards the “best encoder” and directly pull the
CVAE away from KL-vanishing. A labeling network is introduced
to estimate the “best encoder”. It provides a continuous label in the
latent space of CVAE to help build a close connection between la-
tent variables and targets. The whole proposed method is named
Self Labeling CVAE (SLCVAE). To boost the research of diverse
text generation, we also propose a large native one-to-many dataset.
Extensive experiments are conducted on two tasks, which show that
our method largely improves the generating diversity while achiev-
ing comparable accuracy compared with state-of-the-art algorithms.

Index Terms— Self Labeling, CVAE, KL-vanishing, text gen-
eration, diversity

1. INTRODUCTION

Text generating techniques are widely used in various tasks, such as
dialogue generation [1, 2], image caption [3, 4] and question-answer
systems [5, 6], etc. Encoder-decoder models such as SEQ2SEQ[7]
have been widely adopted in text generating tasks due to its accuracy.
However, as conventional encoder-decoder models encode same in-
put patterns to same unique representative vectors without any vari-
ation, their ability of generating different sentences from one input
(also known as the “one-to-many” problem [2]) are limited. Thus
they are not good at handling text generating tasks which further re-
quire results with diversity besides accuracy. Such as open-domain
dialogue systems and selling point generation in e-commerce sys-
tems.

In the early periods, methods are proposed to interfere the in-
ference stage of a well-trained encoder-decoder model to encour-
age abundant outputs. Such as MMI-AntiLM [8] and diverse beam
search [9]. The drawback of such methods is that they do not op-
timize the encoder-decoder models to fit multi-target data and the
quality of their generating results is limited by the trade-off between
accuracy and diversity.

Recently, variational encoder-decoders such as Variational Auto
Encoder (VAE) [10, 11] and Conditional VAE (CVAE) [12, 13]
have shown great potentials in solving the “one-to-many” problems.
These methods introduced an intermediate latent variable and as-
sume that each configuration of the latent variable corresponds to
a feasible response. Thus diverse responses can be generated by

(a) (b)

Fig. 1. Illustration of the generation process and KL-vanishing. (a)
In assumption, each configuration of the latent variable is mapped
by the decoder into a different decoding distribution p(x|z). Bene-
fiting from the latent distribution of z, all p(x|z) with different z can
have a good coverage of the entire target space of x, while p(x|z)
itself can be simple and only responsible for decoding one target. (b)
When KL-vanishing takes place, zs lose the expressiveness of x and
collapse to a same decoding distribution p(x). Thus p(x) trying to
fit the entire space of x alone has a very complex structure and might
only have a poor coverage of the space and lack the diversity.

sampling the variable. However, both VAE and CVAE have encoun-
tered the KL-vanishing problem that the decoder tends to model the
targets without making use of the latent variables. To solve such
problem, various methods have been proposed. Such as KL anneal-
ing (KLA), and word-dropout operation (WD) proposed in [14],
and bag-of-word (BOW) loss proposed in [2]. These approaches,
in essence, weaken the decoder or strengthen the encoder to make
compensation to the objective function of VAE/CVAE and mitigate
the KL vanishing problem. However, it is hard to determine how
weak/strong the decoder/encoder should be.

Orthogonal to current approaches above, we propose an explicit
optimization objective for the encoder to move towards the “best en-
coder” for better expressiveness to fit current decoder. Specifically,
an additional module called “labeling network” is used to estimate
the “best encoder” for the current decoder. Then a loss which mea-
sures the difference between the latent variable of CVAE and pre-
dicted variable from labeling network is added to the original ob-
jective function of the CVAE. Since this loss pulls the encoder to-
wards the “best encoder” approximated by the labeling network and
meanwhile original CVAE pulls encoder to the prior, an equilibrium
will be reached where KL-vanishing can be avoided. A large scale
dataset called EGOODS which contains native one-to-many text data
of high quality is constructed to accelerate the research of diverse
text generation. Experiments are conducted on a public dialogue
dataset and the proposed EGOODS dataset, which demonstrate that
our method called SLCVAE improves the diversity of text generation
without losing accuracy compared to several state-of-art methods.
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Fig. 2. Overview of the proposed method. The top part is the Labeling Phase and the bottom part is the CVAE Phase. The model optimized
alternatively trained between the two phases. SRC and TGT are abbreviations of source and target. R-Net and P-Net are Recognition Network
and Prior Network for the reparameterization trick [2]. Lre denotes a reconstruction loss in ELBO and LKL denotes the KL divergence term.

2. SELF LABELING CVAE

Conventional VAE makes use of a latent variable z sampled from
a prior distribution to generate data x. The logarithm likelihood of
the data x is optimized by maximizing the evidence lower bound
(ELBO) [10, 11] :

log p(x) ≥ Eq(z|x)[log p(x|z)]−KL(q(z|x)||p(z)) (1)

where q(z|x) and p(x|z) are output distributions of the encoder and
decoder respectively. And KL means the Kullback–Leibler diver-
gence [15]. Note that our goal is to generate diverse x using differ-
ent z. Two conditions should be satisfied: First, each z should cor-
respond to a unique x through the decoder. Second, z should obey
the prior distribution p(z). Maximizing Equation 1 encourages the
latter by pulling encoder’s output distribution of z to p(z). However,
with q(z|x) moving towards p(z) during the optimizing procedure,
z loses the discriminative information of different x and the decoder
tends to fit the data even without the help of encoders. Such phe-
nomenon is called KL-vanishing [14, 2]. As a consequence, the first
condition is violated and multiple zs will collapse to a same averaged
output distribution p(x) as is shown in Fig. 1(b).

Thus we propose to strengthen the connection between the latent
z and target x via maintaining the expressiveness of the encoder.
As illustrated in Fig. 1(a), considering that an expressive z has the
ability to recover a unique target through the decoder, the decoder
itself can then be used to find the most expressive z′ given a certain
target x. This in concept equivalents to finding the inverse image of
x of the decoder. So the inverse image z′ of x can be regarded as the
effectiveness label x in the continuous latent space. And if z′ has
been obtained, then we are reasonably motivated to pull the encoder
distribution p(z|x) to be close to z′ to maintain the expressiveness
of the encoder.

However, finding the inverse image of the decoder exactly is not
an easy task. To overcome this, we introduce an extra network to ap-
proximate z′ which is the inverse image of x output by the decoder.
This network, whose output is denoted as zlabel, estimates the ef-
fectiveness label of z in essence and is therefore named as labeling
network. It can also be considered as an approximation to the ideal
encoder for the current decoder.

Specifically, the labeling network shares the same network struc-
ture with the original encoder of VAE, but it only outputs the variable
zlabel rather than the reparameterized distribution. As the output

of the VAE encoder is a distribution q(z|x), we put the expressive
constraint on the expectation of the L2 distance ||z − zlabel||2 be-
tween encoded latent variable and zlabel over the encoder distribu-
tion q(z|x). Thus an expressiveness objective function is defined as
follows:

Lexp = Eq(z|x)[||z − zlabel||2] (2)

which is minimized to encourage the encoder to be more expressive.
By using g(x) to denote the labeling network i.e. zlabel = g(x), and
adding Lexp as an additional term to the VAE’s objective function,
we get the total objective function in following:

LSLVAE = −Eq(z|x)[log p(x|z)] +KL(q(z|x)||p(z))
+λEq(z|x)[||z − g(x)||2] (3)

From this formulation, we can see that, q(z|x) is not only pulled to
p(z) like before, but also pulled to the estimated “best encoder” for
the decoder. The hyper-parameter λ is used to control the importance
of the expressiveness objective. The “best encoder” can expand a
comprehensive coverage of the target space through the current de-
coder. Thus they will reach an equilibrium at which the p(z|x) is
close to p(z) and also remains the expressiveness. As we incorpo-
rate a labeling network into original VAE to estimate the most ex-
pressive latent label given the decoder and strengthen the connection
between the latent z and target x through the decoder itself, we call
this method Self Labeling VAE (SLVAE).

When it comes to CVAE, things remain the same except that
everything is conditioned on c. And the objective function becomes:

LSLCVAE = −Eq(z|x,c)[log p(x|z, c)] +KL(q(z|x, c)||p(z|c))
+λEq(z|x,c)[||z − g(x)||2] (4)

Similarly, we call this model SLCVAE.
As we discussed before, g(x) should be the “best encoder” for

the decoder to recover x. Thus we should optimize g(x) by maxi-
mizing the following objective function:

log p(x|zlabel, c) = log p(x|g(x), c) (5)

with the decoder fixed.
Fig. 2 shows the overview of the whole proposed method. To

optimize Equation. 4 and Equation. 5, we parameterize all the three
modules: the encoder qφ(z|x, c) and decoder pθ(x|z, c) of the
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CVAE, and the labeling network gγ(x, c). An alternative training
schedule is used with two phases: the CVAE phase and the Labeling
phase.

In the CVAE phase, we minimize the loss function of the
SLCVAE:

min
φ,θ,β

LSLCVAE = min
φ,θ,β

[−Eqφ(z|x,c)[pθ(x|z, c)]

+KL(qφ(z|x, c)||pβ(z|c)) (6)

+λEqφ(z|x,c)[||z − gγ(x)||
2]]

where β are parameters of the prior network. In this phase, the la-
belling network gγ(x, c) is fixed to provide a zlabel corresponding
to each x.

In the Labeling phase, we minimize the loss function of the la-
beling network:

min
γ
Llabel = min

γ
[−pθ(x|gγ(x), c)] (7)

The decoder is fixed at this time to get the good expressive label for
current decoder.

3. THE EGOODS DATASET

The “one-to-many” text generating problem is an active research
topic and plays important roles in many tasks. However, there still
lacks real one-to-many datasets to improve and evaluate the algo-
rithms for this problem. Most current datasets that come from di-
alogue system are essentially one-to-one corpora. Although there
may exist various underlying responses for a certain question, these
datasets only contain one answer for each dialogue context due to
data source limitations.

To fulfill the gap between the demand and status quo for one-
to-many dataset, we collect a large scale item description corpus
from a Chinese e-commerce website to construct the native one-to-
many dataset. In this corpus, each item has one description provided
by their sellers and multiple recommendation sentences written by
third-party who is payed to make these sentences more attractive to
customers. The descriptions provided by sellers are usually texts
stacking many keywords of the item properties. On the contrary,
the recommendation sentences are written according to item descrip-
tions but read more smoothly. For the text generation task, we natu-
rally use the sellers’ descriptions as the source to generate multiple
recommendation sentences mimicking humans. This corpus origi-
nates from a real business in which texts are of high quality and co-
herent with sources. We call this very large and native one-to-many
dataset EGOODS.

After simple cleaning and formatting, EGOODS dataset con-
tains 3001140 source and target pairs from 789582 items in total.
So each source item description has 3.8 target recommendation sen-
tences on average. The dataset is split into training/validation/testing
parts with respect to items, each of which contains 2961317/19536/
20287 pairs.

4. EXPERIMENTS

4.1. Experimental Setups

Our experiments are conducted on two text generating tasks: open-
domain dialogue generation and recommendation sentence gener-
ation. For the first task, the public dialogue dataset Daily Dialog

(DD) [16] is used. DD dataset is collected from different web-
sites under 10 topics. It contains 13118 multi-turn dialogue ses-
sions in English, and is split into training/validation/testing set of
11118/1000/1000 sessions. For each full speaker turn, we use all
utterances but the last one as the dialogue context to predict the last
one. Need to note that though there may exist various responses for
a question, DD dataset essentially only contains one-to-one data. To
better model and evaluate the diversity, the newly constructed one-
to-many dataset EGOODS is adopted in the second task.

We compared our SLCVAE (SL) to 4 strong baselines: SEQ2SEQ
[7], MMI-AntiLM [8], CVAE and CVAE with bag-of-word loss
(BOW) [2]. Several training skills, such as KL-annealing(KLA) and
word dropout(WD) [14], are used in combination with baselines and
our method to improve the performance. All methods are required
to generate 10 responses for each given input. Note that although the
SEQ2SEQ model uses deterministic encoding vectors, the widely
adopted beam search strategy can be applied during inference pro-
cedure to generate 10-best decoding results which corresponds to 10
responses (denoted as SEQ2SEQ+BS).

The whole structure of SLCVAE is implemented with the fa-
mous open source library PyTorch[17]. Encoders are two-layer bidi-
rectional RNNs [18] with Gated Recurrent Units (GRU) [19] and
the decoders are two-layer unidirectional RNN with GRUs through-
out all experiments. For DD and EGOODS dataset respectively, the
word embedding sizes and hidden dimensions of RNN are set to 32
and 128 according to the size of each dataset. And in all CVAE-
based methods, the latent variable dimensions are set to 8 and 16 for
two datasets separately. The coefficients of the labeling network (λ)
are set to be 0.5 and 0.1. The Adam optimizer [20] with a learning
rate of 0.0001 is used to train all models with batch sizes of 64 and
128 for two datasets.Training skills of KLA and WD are also used
to get further better performance.

Accuracy and diversity are two sides of the generations we need
to concern. Automatic quantitative measures for these purposes
are still an open research challenge [21, 22]. [2] proposed BLEU-
precision and BLEU-recall metrics for discourse-level accuracy and
diversity respectively as following:

precision(c) =

∑N
i=1 maxj∈[1,Mc] d(rj , hi)

N

recall(c) =

∑Mc
j=1 maxi∈[1,N ] d(rj , hi)

Mc

(8)

where d(r, h) means a similarity metric between a generated sen-
tence h and a reference r. BLEU-1, BLEU-2 and BLEU-3 are
adopted as such metric in our experiment and their average result is
calculated as the final quantitative measure. However, BLEU-recall
is defined based on lexical similarity, which might penalize a reason-
able but not same prediction. Following [8], we also use the number
of distinct n-gram to measure the word-level diversity. The distinct
is normalized to [0, 1] by dividing the total number of generated
tokens. In summary, BLEU-precision is reported as the accuracy
measure, and BLEU-recall, distinct-1 and distinct-2 are reported as
diversity measures.

We also conduct human evaluations on the EGOODS dataset.
7 human experts are employed to measure the fluency of generated
sentences, coherence of each sentence to source and diversity. For
fluency and coherence, experts are asked to vote to each sentence.
Sentences which yield more than 4 votes are good sentences. The
ratio of good sentences are reported. For diversity, 5 level of diverse
scores are introduced. The higher the score, the more diverse the
sentence is. The final diversity score of each sentence is the average
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Table 1. Results on Daily Dialog (DD). The bottom 3 lines are
CVAE based methods.

Methods BLEU-
prec

BLEU-
recall

distinct-
1

distinct-
2

SEQ2SEQ+BS 0.164 0.282 0.002 0.007
MMI-AntiLM 0.153 0.275 0.002 0.012

KLA+WD 0.212 0.345 0.010 0.041
KLA+WD+BOW 0.210 0.344 0.013 0.066

KLA+WD+SL 0.214 0.354 0.014 0.078

Table 2. Results on EGOODS. The bottom 3 lines are CVAE based
methods.

Methods BLEU-
prec

BLEU-
recall

distinct-
1

distinct-
2

SEQ2SEQ+BS 0.379 0.388 0.0012 0.0042
MMI-AntiLM 0.356 0.374 0.0021 0.0146

KLA+WD 0.373 0.405 0.0039 0.0216
KLA+WD+BOW 0.374 0.404 0.0039 0.0231

KLA+WD+SL 0.373 0.405 0.0049 0.0270

score of all experts.

4.2. Results

4.2.1. Automatic Quantitative Measurement

Table. 1 shows the evaluation results of all methods on Daily Dia-
log dataset. Training skills of KLA and WD are used for all CVAE
based methods. We can see that our proposed method outperforms
all baselines in terms of all the 4 metrics on this task. This confirms
our insight of the generating process that our labeling objective can
lead to an equilibrium at which the KL-vanishing problem is signif-
icantly relieved and so result in better diversity. Remind that Daily
Dialog is actually a one-to-one dataset. The better performance in
diversity on DD demonstrates that our model can better exploit such
training data without explicit one-to-many annotations.

Performances of different methods on EGOODS are shown in
Table. 2. Our method achieves comparable accuracy with baselines
and best diversity among all methods. This demonstrates the effec-
tiveness of SLCVAE on the one-to-many data. In detail, our method
harvests the much better gains on word-level diversity while is only
slightly better than CVAE on BLEU-recall. We explain this in two
folds: First, strong baselines can benefit from the large scale and
one-to-many nature of EGOODS to better fit the multiple targets.
Another reason is that automatically evaluating the quality of gener-
ated texts is very challenging. BLEU-recall only measures the cov-
erage of hypothesis for the annotated targets, and could not judge
good algorithms precisely when the annotations are limited. In such
situation, distinct measures the vocabulary a model actually uses
and demonstrates its absolute lexical diversity. Furthermore, we ob-
served that SEQ2SEQ+BS obtains the best BLEU-precision among
all methods on EGOODS, but it performs much worse on Daily Di-
alog. Meanwhile, the BLEU-recall gap between SEQ2SEQ+BS and
the best result on EGOODS is obviously small than that on DD.
We point out that our dataset especially designed for “one-to-many”
problem significantly improves the generation quality of SEQ2SEQ
methods.

Fig. 3. Example of generated texts.

4.2.2. Human Evaluation

Human evaluation results on EGOODS are shown in Table 3. Such
results show that our method achieves comparable fluency and co-
herence as baseline methods, but our diversity is much higher than
other models. Although the SEQ2SEQ+BS method achieves the best

Table 3. Human evaluation results.
Methods Fluency(%) Coherence(%) Diversity

SEQ2SEQ+BS 96 65 1.55
KLA+WD 87 64 3.12
KLA+WD+BOW 83 66 3.18

KLA+WD+SL 91 66 3.32
fluency, it sacrifices too much diversity, which means the result is
monotonous and dull.

4.2.3. Text Generating Examples

Fig. 3 shows an example of generated texts for EGOODS. All
source and generated sentences are displayed with their English
translations. 3 results are generated separately by SEQ2SEQ+BS,
CVAE and our method SLCVAE. The results from all three meth-
ods are of good fluency and coherent to the input. But obviously
SEQ2SEQ+BS fails to show different expressions thus gets poor
diversity. Both CVAE model and our method tend to show stronger
abilities in generating diversely than SEQ2SEQ+BS, since we can
see that the generated results have better coverages for the refer-
ences. This finding is consistent with the quantitative experiment
results we have discussed above.

5. CONCLUSION

Recently CVAE based methods show great potentials for “one-to-
many” text generating tasks. However CVAE working with RNNs
tends to run into the KL-vanishing problem. In this paper, we pro-
pose the self labeling mechanism which connects the decoder with
latent variable by an explicit optimization objective. It leads the en-
coder to reach an equilibrium at which the decoder can take full
advantage of the latent variable. Experiments show that SLCAVE
largely improves the generating diversity.
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