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ABSTRACT

Vienna’s tram network is regularly surveyed by an inspection
tram that uses a laser light section method to measures wear of
the rail head and a microphone to detect curve squeal. In or-
der to expand the vehicle’s inspection capabilities and encom-
pass more condition indicators for maintenance purposes, the
vehicle’s accelerometers which were hitherto only employed
as an inertial measurement unit are now used to monitor the
vibration of the axle bearings as the tram travels across the
network. The inspection tram is equipped with four triaxial
accelerometers on the axle bearings of the middle bogie and
another one on the bogie itself. In the first stage of the cur-
rent research project, the aim is to automatically detect and
classify periodic unevenness of the rail head, known as cor-
rugation, by training a classifier on a range of vibration fea-
tures. Applying this machine learning algorithm during post-
processing allows the condition state of the rail head to be
compared across the network.

Index Terms— vibration features, corrugation, machine
learning, condition assessment

1. INTRODUCTION

Vienna’s public transport operator (Wiener Linien) is respon-
sible for inspecting the city’s tramway rails for wear and other
defects at regular intervals in order to ensure the limits for
track gauge are maintained, which is central to avoiding de-
railment. In additional to fundamental safety aspects, the
regular inspections increasingly focus on serviceability limit
states such as comfort criteria in terms of vibro-acoustic emis-
sions for both, passengers and residents living in the vicinity
of the tracks. One type of rail defect considered during rou-
tine inspection is corrugation, which is a periodic defect on
the rail head that can have several causes. It is primarily a
result of wheel-rail interaction under the given operating con-
ditions and typically shows a wavelength of 5-15 cm on light
railways. Regarding its exact classification and causes, which
are not subject of the presented study, interested readers are
kindly referred to the available literature [1, 2, 3, 4].
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The aim of the presented study is to use MEMS ac-
celerometers, which are currently employed as the inspection
vehicle’s inertial measurement unit (IMU), for tracking the
axle bearings’ vibration as the vehicle travels across the net-
work and to use this data to gain information about the rail
head, where the dynamic interaction between the wheels and
the rails takes place.

In [5], the use of inspection vehicles on a tram track in Bu-
dapest was investigated and acceleration spectrograms were
employed to distinguish different track defects. Automatic
detection was not carried out, as the focus was placed on com-
paring the results of subjective track rating with static in-situ
measurements and rolling stock measurements.

In [6], the authors also investigated the correlation of on-
board accelerations with rail surface roughness on a regional
trainline in Japan. They found the trailing axle of the in-
strumented bogie to have a lower detection accuracy than the
leading axle. Their results show the feasibility of estimating
corrugation from axle box acceleration, but do not give any
threshold values or suggest means of automatic detection.

Likewise, the authors of [7] present a feasibility study for
a vibration diagnostic tool on subway trains in Milan. They
address the sensor and measurement problems to detect short-
pitch corrugation, with lesser focus on the signal processing
or algorithms for automatic detection.

The application of machine learning algorithms to detect
surface conditions using onboard data is investigated in [8].
The authors used velocity and suspension deflection of a mo-
torcycle to classify the road surface in sections of variable
length (always using 1 s of data) in real time.

The presented study thus aims to expand upon existing
literature by applying machine learning algorithms to onboard
data in the urban rail sector to evaluate the rail head condition
using vibration data.

2. SENSORS AND DATA PROCESSING

2.1. Hardware

The inspection vehicle running along Vienna’s tramway
tracks is a former tram car which was modified to contain
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a server and a data acquisition system triggered by an odome-
ter [9]. Recording starts as soon as the vehicle is set in motion
and encompasses a laser light section, one microphone, six
triaxial accelerometers and two triaxial gyroscopes. The
microphone is sampled at 48kHz and all accelerometers
and gyroscopes at 8192 Hz. Mapping the inspection tram’s
recordings onto Gauf3-Kriiger coordinates when locating rail
defects or irregularities is based on finding the best match be-
tween the tram’s path of motion (odometer, gyroscopes) and
a network graph of the city’s tram lines, containing absolute
coordinates at known reference nodes.

2.2. Data analysis

For testing purposes, the features used for automatic detection
of rail corrugation are defined using the axle bearings’ vertical
vibration only. This restriction is acceptable given the nature
of the irregularity, which only appears on the running surface
of the rails and is thus assumed to have a minimal or even neg-
ligible effect on the axles’ longitudinal or sideways vibration
to the track direction. Furthermore, corrugation typically ap-
pears over a considerable length of rail, particularly in bends.
Unlike local defects, such as rail breaks, spalling, web defects
or squats, corrugation typically extends across tens of meters
or more, allowing the rails to be analysed in predefined seg-
ments with averaged parameters. These segments (bins) are
chosen to be 5 m long, with start and end points being defined
according to the network graph.

Using the four axles on the tram’s middle bogie, the time
domain data is extracted from the onboard binary records and
downsampled to 2kHz. This choice was based on the sen-
sors’ frequency range and the need for efficiency in post-
processing, as a complete survey record of over 30 km length
at a full 8192 Hz sampling rate would amount to several giga-
byte of data when converted to text format.

The following list of features is computed for each accel-
eration channel and split into 5 m bins. Within each bin, the
mean value is computed for further processing.

squared amplitude

fast-weighted level (L r in dB re. 1x1075m/s?)
fast-weighted variable bandpass level (Lycc, F,0BP)
intensity ratio( R)

fast-weighted one-third octave levels L. r

Dk e =

The one-third octave bands range from 1.2 Hz to 500 Hz
and IR is computed as the ratio between L. r,pp and
Lgce, . The variable bandpass is a velocity dependent fil-
ter, which extracts the signal that is produced by the typi-
cal corrugation wavelengths (5-15 cm). Rather than convert-
ing the signal from time to space domain (using the tram’s
velocity) and performing an interpolation to achieve regular
sampling intervals, the bandpass filter is applied on the short-
time Fourier transform (STFT, window length 512 samples
and overlap 480). The bandpass filter is a two-dimensional

mask, where each frame’s average velocity is used to compute
the bandpass’ frequency limits. After applying the mask, the
spectrum undergoes an inverse STFT to yield the bandpass
filtered time domain signal for computing the F'ast weighted
level.

2.3. Regression model

Unlike the optical sensor system, which is triggered at con-
stant space intervals of 1 cm, the acceleration sensors are trig-
gered at constant time intervals and the recorded vibrations
are a function of the vehicle speed and track construction.
Gaining information about the running surface and its irregu-
larities from axle bearing acceleration thus requires the com-
pensation of these dependencies prior to extracting features
that are a potential condition indicator.

The binned, averaged features listed above are thus
checked for their dependency on vehicle speed, curvature
and vehicle acceleration. For each survey record, a linear
regression model was defined for each dependent feature
versus these independent operating conditions. Nearly all
features were found to have a logarithmic dependency on
the tram’s velocity as shown in Fig.1, whereas curvature or
vehicle acceleration yielded no apparent trend.

Using these regression models, the expected value of each
feature in each bin was computed and subtracted from the
measured one. These relative deviations are included in the
overall feature catalogue, providing 62 features per channel.
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Fig. 1. Measured and predicted acceleration levels in each
bin.

3. SUPERVISED LEARNING

3.1. Signal preconditioning

The challenge at hand is a classification task, which aims to
allocate a corrugation category to each bin in the network
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graph. These condition categories are represented by a value
ranging from 1 to 5, where 1 indicates no corrugation and 5
very strong corrugation. The corrugation extent of each bin
was determined by maintenance personnel during in-situ in-
spections of around 9 km of track and the class distribution of
the available data is shown in Table 3.1.

Table 1. Bin number per corrugation class.
Class | 1 2 | 345
Bin count \ 630 \ 339 \ 347 \ 152 \ 220

One concern, as seen in the table, is the sample size for
strong corrugation, which is very small compared to the num-
ber of bins with weak corrugation. Overfitting thus poses a
particular problem for corrugation categories 4 and 5, as their
bin counts are considerably smaller than the number of avail-
able features. Furthermore, a very limited number of strongly
corrugated track sections account for most of the bins in these
two classes, meaning that independent variables such as track
geometry or vehicle dynamics tend to be very similar across
these neighbouring bins. Oversampling techniques such as
SMOTE [10] together with undersampling of the majority
classes are currently being tested to resolve this problem, but
even for classes with larger samples, the number of features
available still surpasses the number of observations.

To reduce the chance of overfitting, the initial feature
space, containing a total of 248 features, is reduced by

(i) assuming the front and rear axle bearings on the same
side of the vehicle are redundant for this type of analy-
sis and

(ii) a principal component analysis (PCA) on the annotated
and standardised dataset to find the most relevant or-
thogonal axes in the remaining, transformed feature
space.

To this end, all further analyses are restricted to the two
front sensors and the PCA showed that the first 30 compo-
nents account for over 0.93 of the dataset’s variance.

3.2. Machine learning algorithms

Prior to training the classifiers, the labelled data was split into
a random but stratified set of training (70%) and test data
(30%). Stratification ensures that the relative occurrence of
each category is maintained within each subset, which is of
particular importance given the small sample size of highly
corrugated bins.

Out of a choice of the most popular classification meth-
ods, logistic regression (LR), random forests (RF) and support
vector machines (SVM) were the three classifiers investigated
in this project. These models were optimised in terms of clas-
sification accuracy (0-1) for the given training scenario us-
ing a grid search on their respective hyperparameters. Tuning

these high level parameters was performed through a 10-fold
cross validation on the training dataset. The achievable accu-
racy for the test set for each classification method is presented
in Table 3.2.

Table 2. Accuracy of the investigated classification meth-
ods: logistic regression (LR), random forests (RF) and sup-
port vector machines (SVM).

Classifier | LR | RF | SVM |

Accuracy | 05 | 06 | 0.7 |

For SVM, a radial basis function kernel with C=10.0 and
gamma=0.01 delivered the highest subset classification ac-
curacy, with a score of 0.7 when applied to the test dataset.
Herein, C is a regularization parameter also referred to as the
soft margin constant. Large values of C lead to greater penal-
ization of misclassification, producing very narrow decision
boundaries, whereas small values of C give hyperplanes with
broader margins that are better at generalising when applied
to new data, but produce more classification errors. Gamma
is an inverse-width parameter of the kernel. For small val-
ues, the decision boundary is very simple. For larger values
of gamma, the complexity of the boundary increases, yielding
more accurate classification of the training data but potential
overfitting.

For the RF classifier, a forest of 100 trees with a maxi-
mum tree depth of 15 and a minimum number of 4 samples
required to split an internal node yielded the highest classifi-
cation score of 0.6.

For LR, the liblinear solver with an L2 penalty and C=0.1
produced the best classification score of only 0.5 on the test
dataset. Given the multi-class nature of the problem, this re-
sult is better than a randomly picked class but clearly still
much lower than desired.

At this point it should be noted that for linear classifiers,
adjusting C does not actually have a great impact on the clas-
sification accuracy in the case of non-linearly separated data.
To visualize the non-linear corrugation class separation, the
first two principal components employed in this study are
plotted in Fig.2.

One word of caution about this procedure: The 10-fold
cross validation randomly selects stratified training and test
datasets for optimising the performance of the models. Adja-
cent bins along the tram tracks may, however, not be fully
independent due to only gradually or even un-changing
track geometries, track superstructure and driving condi-
tions. Hence there may be considerable correlation between
training and testing datasets that could lead to a potential
overfit. One way to handle this could see each fold consist-
ing of a labelled dataset of neighbouring bins (assuming the
track properties are the same and enough samples from each
corrugation class are available). Due to the current lack of
annotated data from different regions of the city’s network,
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Fig. 2. Non-linear corrugation class separation using the first
two principal components (PC).

the authors will follow up on this issue in the next stage of
the study when a greater diversity of labelled data in terms of
location becomes available.

3.3. Classifying corrugation acrosss the network

The SVM with its optimised hyperparameters (highest clas-
sification accuracy out of the three investigated models) is
trained using the entire labelled dataset and subsequently
applied to the unlabelled dataset. That way, a total of 30
months’ worth of records from the inspection tram, covering
over 8000 km of track had a corrugation class assigned to
them. As Vienna’s network is 417 km long, these records
already provide multiple coverage of all tracks at regular
intervals. Plotting the corrugation extent on a map of the
city’s tram network allows the identification and localization
of hot spots, which are potentially in need of rail grinding to
reduce the corrugation depth. Furthermore, the classification
of repeated surveys over the same stretch of track will allow
the development of corrugation to be monitored over time for
better maintenance planning.

One issue that still needs resolving in the current classifi-
cation procedure is the presence of other rail head irregulari-
ties that lead to features which the algorithm may mistake for
corrugation. While switches, squats or rail breaks produce
impulsive signals with a high transient component that can
be differentiated from harmonic signals, other defects such as
spalling may be more difficult to detect. The reliability of the
classification algorithm will thus need in-situ validations at
the current stage.

4. CONCLUSION AND OUTLOOK

In this study, the use of machine learning algorithms on vibra-
tion acceleration features was tested to classify the extent of
corrugation of tram rails in Vienna. The classification is per-
formed on bins of 5 m length, using vibration signals from the
front axle bearings of an unpowered bogie on an inspection
tram that covers the entire network biannually. The tram’s
velocity was found to be the predominant independent vari-
able which affects the magnitude of nearly all investigated
features. In order to eliminate the vehicle’s influences, it was
compensated through the use of a regression model to obtain
the expected magnitude of each feature in each bin at the cur-
rent velocity.

Other independent variables, which will be looked at in
the next stage of the study are the type of superstructure (bal-
lasted track versus the prevalent grooved rails in the road sur-
face) and temperature influences.

Currently, the support vector machine defined for this task
yields a classification accuracy of only 70%, which the au-
thors aim to improve upon by

(i) incorporating new vibration features that could be in-
dicative of corrugation, such as data from the bogie ac-
celerometer or axle vibration in the lateral direction,

(ii) including acoustic features from the onboard micro-
phone,

(iii) further compensating the influence of the survey vehi-
cle on the data by investigation cepstrum coefficients,
and

(iv) improving the data quality of training data by finding
more bins (labelled data) with strong corrugation from
different origins across the network.

Being able to produce an accurate map of the latest cor-
rugation status would provide the infrastructure operator with
an ideal support for decision-making during long- and mid-
term maintenance planning and support staff during in-situ
inspections.
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