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ABSTRACT 

In this paper, a Bayesian-optimized bidirectional Long Short 

-Term Memory (LSTM) method for energy disaggregation, 

is introduced. Energy disaggregation, or Non-Intrusive Load 
Monitoring (NILM), is a process aiming to identify the 

individual contribution of appliances in the aggregate 

electricity load. The proposed model, Bayes-BiLSTM, is 

structured in a modular way to address multi-dimensionality 

issues that arise when the number of appliances increase. In 

addition, a non-causal model is introduced in order to tackle 

with inherent structure, characterizing the operation of multi-

state appliances. Furthermore, a Bayesian-optimized 

framework is introduced to select the best configuration of 

the proposed regression model, thus increasing performance. 

Experimental results indicate the proposed method’s 

superiority, compared to the current state-of-the-art. 

Index Terms— Deep Learning, Recurrent Networks, 

LSTM, Bayesian Optimization, Energy Disaggregation 

1. INTRODUCTION 

A detailed monitoring of energy consumption at appliance-

level should be performed to improve domestic energy 

efficiency, resulting in an overall picture of the Distributed 

Energy Resources (DER’s) characteristics [1]-[3]. Then, 

recommendations are given to users to take action for energy 

savings [4]. There is a variety of sensors that can measure the 

power characteristics of an appliance, providing a reliable 

picture of the electricity load. However, such intrusive 
methods are expensive mainly due to the sensors’ installation 

cost. On the contrary, non-intrusive techniques are able to 

estimate the appliances’ energy consumption by exploiting 

the total (aggregate) energy signal as measured by the 

household smart meter interface. This is achieved by 

combining machine learning and signal processing tools. 

Using NILM estimates, users know the distribution of the 

measured aggregate power load signal per appliance [2].  

Such a decomposition requires advanced signal 

processing tools since (i) the energy signatures of the 

appliances are not independent with each other, (ii) 

appliances arbitrarily switch ON/OFF, and (iii) each 
appliance has different operational models, which contribute 

quite differently to the total consumed power load [2].  

1.1. Related Work 

NILM approaches can be discriminated into methods using 

classification, clustering or regression schemes, or methods 

exploiting optimization techniques. Classification/clustering 
approaches are based on either supervised or unsupervised 

learning paradigms. Hart was the first to propose a method 

for disaggregating electrical loads through the clustering 

based on appliances’ characteristics [5]. The limitation of 

clustering-based methods, is that they cannot predict the 

power load of an appliance since there are no supervised 

training samples. Other methods rely on Dynamic Time 

Warping (DTW) [6], matrix factorization [1], neuro-fuzzy 

modelling to handle uncertainties [7], appliance load 

modelling [8], [9] or even graph-based representations [10]. 

The drawback of all the aforementioned methods is that they 

handle the classification problem as one input-output linear 
or non-linear relationship. However, as the number of 

appliances (or the number of operations per appliance) 

increases, the targeted classes also increase exponentially, 

deteriorating the classification performance (the so-called 

curse of dimensionality) [11].  

Other methods exploit optimization principles in which 

the optimal combination of appliances’ signal has as a result 

an estimated aggregate signal close to the real total measured 

power. Hidden Markov Models (HMMs) and various 

extensions [12]-[14] or hybrid methods [15] are proposed. 

Again, the main limitation of these approaches is that as the 
appliances increase, the state space exponentially increases, 

making energy disaggregation impossible to be practically 

implemented. Recently, deep learning [16] has been 

investigated for energy disaggregation. Particularly, the 

works of [16], [18] investigate the use of Convolutional 

Neural Networks (CNNs). The main drawback of CNNs is 

that they have no recurrent properties, which is an important 

issue; appliance power load is a highly temporal dependent 

time series. To address this drawback, recurrent LSTM 

networks [19] have been introduced for NILM [20], [21].   

1.2. Our Contribution 

The proposed appliance-based, Bayesian-optimized BiLSTM 
regression model satisfies a set of crucial characteristics 

making it superior than the other previous methods. The 

arising limitations and drawbacks of these methods are 
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addressed in this paper with the adoption of a modular, non-

causal sequence-to-sequence regression model. The proposed 

model’s specific features are summarized below: 

Long Term Regression: NILM is often addressed, in the 

literature, as a classification problem, i.e., estimate the 
operational states of an appliance (e.g. ON/OFF or multi-

state). However, such approaches have the drawback that 

significant information (power fluctuations) regarding the 

electricity load is lost. On the contrary, this work addresses 

NILM as a sequence-to-sequence regression problem, thus 

allowing to maintain all the necessary information.  

Additionally, existing long term dependencies should be 

accounted for, increasing regression performance. 

Modularity: Usually, current approaches (e.g. HMM-based 

ones) handle energy disaggregation as a single input-output 

relationship. In this context, as the number of appliances 
increases, the complexity of model combinatorially 

increases. Such dimensionality issues are addressed in this 

work. In particular, the adopted procedure is conducted for 

each device separately with an appliance-based, modular and 

extensible model. Therefore, an increase of the expected 

number of detected appliances does not introduce additional 

complexity to the proposed model.  

Optimization: Hyperparameters’ tuning in a deep network is 

a major issue. In general, hyperparameters are not optimized 

and are assumed to be fixed throughout time. However, 

seasonal attributes affect appliance electricity loads, 

influencing energy disaggregation performance. Bayesian 
optimization strengthens model performance through the 

optimal hyperparameters selection, creating a unique optimal 

model, adaptable to each appliance’s individual settings and 

seasonal variations. 

Non-causality: Existing methods assume causal signal 

dependencies. However, the way that an appliance operates 

is often non-causal. In particular, the current state of a power 

load may have some dependence on future states (e.g. in a 

washing machine, pre-washing cycle always precedes 

washing cycle). In our approach, non-causality is achieved by 

modifying the conventional LSTM taking into account both 
previous and future states of electricity power load. 

Bidirectional recurrent regression deep models are thus 

adopted for NILM. Bidirectionality has been first introduced 

in [22] for shallow learning paradigms and especially for 

Recurrent Neural Networks (RNNs). The non-causality 

concept has been extended for LSTM networks [23] 

indicating promising results for speech recognition. To the 

authors’ knowledge, there are no research works that 

investigate bidirectionality and long term dependence for 

energy disaggregation, incorporating a probabilistic Bayesian 

framework to optimally select the network parameters.  

2. BIDIRECTIONAL SHORT-TERM 

RECURRENT REGRESSION FOR NILM 

2.1. Notation and Problem Formulation  

Let M be a set of all known household’s appliances. Let 𝑝(𝑡𝑛) 

be the aggregate measured energy signal. Assuming discrete 

times 𝑝(𝑡𝑛) = 𝑝(𝑛𝑇) = 𝑝(𝑛), where 𝑇 = 𝑡𝑛 − 𝑡𝑛−1 is the 

sampling interval. Let us now denote as  𝑝𝑗(𝑛) the active 

power load of j-th appliance out of M available. Furthermore, 

we assume that we have M independent models, each 

corresponding to an appliance, resulting in a modular 

framework; each time a new appliance is added, a new 

network is built. We can express 𝑝(𝑛) as: 

𝑝(𝑛) = ∑ 𝑝𝑗(𝑛) + 𝑒(𝑛)

𝑀

𝑗=1

 (1) 

where 𝑒(𝑛) denotes the additive noise of the measurements.  

In an NILM modelling framework, the measurements 

𝑝𝑗(𝑛) are not available, since there are no smart plugs 

installed. Instead, only 𝑝(𝑛) is given. Therefore, the problem 

is to estimate 𝑝𝑗(𝑛) from 𝑝(𝑛). Each appliance has a unique 

spectral signature. This is the main principle we exploit to 

decompose the aggregate signal 𝑝(𝑛) into its components 

𝑝𝑗(𝑛). The spectral signatures of signal are actually derived 

as an integration of the values of the signal over time. Thus, 

in order to get the estimates �̂�𝑗(𝑛) of 𝑝𝑗(𝑛), we need to 

assemble measurements of the aggregate signal 𝑝(𝑛) over a 

time window K+1, thus, 𝐩(𝑛) = [𝑝(𝑛) ⋯ 𝑝(𝑛 − 𝐾)]𝑇 . 

Then, the values 𝑝𝑗(𝑛) can be expressed as an non-linear 

relationship of 𝐩(𝑛). Therefore, we have that 

𝑝𝑗(𝑛) = 𝑓(𝐩(𝑛)) + 𝑒(𝑛) = �̂�𝑗(𝑛) + 𝑒(𝑛) (2) 

2.2. Bidirectional Short-Term Recurrent Regression 

One way to approximate the unknown relationship 𝑓(∙) is 

through a feed-forward neural network [24], then     

�̂�𝑗(𝑛) = 𝐮𝑗(𝐧)𝑇 ∙ 𝐯𝑗  (3a) 

𝐮𝑗(𝑛) = [

𝑢𝑗,1(𝑛)

⋮
𝑢𝑗 ,𝐿 (𝑛)

] = [

𝑡𝑎𝑛𝐻(𝐰𝑗,1
𝑇 ∙ 𝐩(𝑛))

⋮
𝑡𝑎𝑛𝐻(𝐰𝑗,𝐿

𝑇 ∙ 𝐩(𝑛))
] (3b) 

 tanH refers to the hyperbolic tagent, while 𝐰𝑗,𝑖 =, i=1,…,L, 

are weights connecting the input and the i-th hidden neuron. 

Index n indicates the n-th time period. Vector 𝐮(n) is actually 

a state vector, gathering all hidden layer responses 𝑢𝑗,𝑖. Index 

j refers to the j-th appliance in which the regressor is built. 

These non-linear transformations are linearly combined to 

provide the estimate of  �̂�𝑗(𝑛), using a set of weights 𝐯𝑗. In 

the following, we omit subscript j for simplicity, since we 

refer to a particular j-th regressor. Since the appliances 

randomly become dynamically active/inactive, the state 

vector 𝐮(n) depends on its previous values. This means that, 

𝑢𝑖(𝑛) =  𝑔(𝒘𝑖
𝑇 ∙ 𝒑(𝑛) + 𝒓𝑖

𝑇 ∙ 𝐮(𝑛 − 1)) (4) 

where 𝐫𝑖  is a set of parameters that weigh the contribution 

of 𝐮(n − 1) to the current state values. Eq. (4) actually 

models a recurrent regression of short range. Since appliance 

power load dependencies are in fact non-causal signals, 

relations on both previous and future states should be taken 

into account. The idea is to split the model into two parts; the 
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forward (relate the previous) and the backward pass (relate 

the future) [22]. That is, 

𝑢𝑖(𝑛) =  𝑔(𝐰𝑖
𝑇 ∙ 𝐩(𝑛) + �⃗�𝑖

𝑇 ∙ 𝐮(𝑛 − 1) +∙ �⃐�𝑖
𝑇 ∙ 𝐮(𝑛 + 1)) (5) 

3. BAYESIAN-OPTIMIZED BIDIRECTIONAL LSTM 

REGRESSION FOR NILM 

3.1. Bidirectional LSTM for NILM 

Household appliances follow repeated patterns span on long 

time periods, implying that short range dependency is not 

adequate. For instance, a washing machine follows several 

operational cycles (e.g. pre-washing, washing, drying, etc.) 

each related with each other in a long range. For this reason, 

a bidirectional LSTM network is adopted in this paper as the 

basic regression model for power load estimation. Each node 

is a memory cell that contains three different components (see 

Fig.1); (i) the forget gate, (ii) the input gate and the input 

node, and (iii) the output gate.    
 

 

Fig. 1. Bidirectional long range recurrent regression model and the 

respective memory cell. 

The forget gate: The purpose of this component is to 

throw the unnecessary information out of the memory cell. 
The output ranges between 0 and 1 -values close to 0 mean to 

dispose the incoming information, while values close to 1 

indicate the worth-remembering information.  

The input node/gate: The input node activates 

appropriately the respective state (true or false output from 

the “tanH” activation). Instead, the input gate regulates 

whether the respective hidden state is “significant enough” on 

the regression model; sigmoid operation.  

The output gate: This regulates whether the response of 

the current memory cell is “significant enough” to contribute 

to the next memory cell.  

{𝑓(𝑛), 𝐼(𝑛), ℎ(𝑛), 𝑂(𝑛)} =  {𝜎, 𝑡𝑎𝑛𝐻} 

(𝐰
𝑇,{𝑓,𝐼,ℎ,𝑂}

∙ 𝐩(𝑛) + �⃗⃗�
𝑇,{𝑓,𝐼,ℎ,𝑂}

∙ 𝐮(𝑛 − 1) + �⃐�
𝑇,{𝑓,𝐼,ℎ,𝑂}

∙ 𝐮(𝑛 + 1))     (6) 

3.2. Bayesian Optimization  

One critical aspect in our design is the selection of the 

configuration parameters of the proposed network (Bayes-

BiLSTM). This paper, instead of applying the traditional 

manual-based tuning of the model parameters, adopts a 

probabilistic Bayesian framework through which the model 

configuration parameters are optimally tuned.  

Let us assume that a certain number of configuration 

parameters is available, such as the number of memory cells, 

the learning rates, etc., denoted as  𝛑𝑖. If we construct a set of  

Q different configurations, i.e., 𝐷1:𝑄 = {𝛑1 ⋯ 𝛑𝑄}, then, 

we can evaluate the error 𝐸(𝐩, 𝐝, 𝛑) that the network gives 

when (i) it receives as inputs the data p (i.e., a temporal-time 

series-collection of aggregate energy signals over a time 

window) (ii) the network output is compared against the 

desired (target) outputs d and (iii) a given 𝛑 model 

configuration. In this context, we have omitted index n, since 

we refer to any time instance.  We assume  Mean Square Error 

(MSE). Let us denote as 𝐸𝑚𝑖𝑛 the minimum across all Q 

configurations. Then, an improvement function is given:   

𝐼(𝐩, 𝐝, 𝛑)) = max {0, 𝐸𝑚𝑖𝑛 − 𝐸(𝐩, 𝐝, 𝛑)} (7) 

Assuming a probabilistic framework, we estimate 

𝐸𝑥𝑝𝑒𝑐𝑡(𝐼(𝑝, 𝑑, 𝜋)) = 𝐸𝑥𝑝𝑒𝑐𝑡(𝑚𝑎𝑥 {0, 𝐸𝑚𝑖𝑛 − 𝐸(𝑝, 𝑑, 𝜋)}) (8) 

Eq. (8) can be solved only if we know the probability 

distribution of the error function given a set of configurations, 

that is, 𝑃(𝐸|𝐷1:𝑄).  Exploiting the Bayesian rule we can 

express this probability as  

𝑃(𝐸|𝐷1:𝑄) ∝ 𝑃(𝐷1:𝑄|𝐸)𝑃(𝐸) (9) 

Usually 𝑃(𝐸) follows a Gaussian distribution and 

𝑃(𝐷1:𝑄|𝐸) is then expressed as a Gaussian process of mean 

𝜇(𝛑) and standard deviation Σ  [25]: 

𝚺 = [

𝑘(𝛑1 , 𝛑1) ⋯ 𝑘(𝛑1, 𝛑𝑄)

⋮ ⋱ ⋮
𝑘(𝛑𝑄, 𝛑1) ⋯ 𝑘(𝛑𝑄 , 𝛑𝑄)

] (10) 

where 𝑘(∙) is a kernel function. The target of our optimization 

is to find out a new configuration 𝛑∗ ≡  𝛑Q+1, which will 

further reduce the MSE or equivalently increase the 

improvement 𝐼(𝐩, 𝐝, 𝛑∗). Then, for the new augmented set 

𝐷1:𝑄+1 that includes 𝛑∗ ≡  𝛑Q+1, 𝑃(𝐷1:𝑄+1|𝐸) will again be 

a Gaussian process of standard deviation  

                          [
𝚺 b
b𝑇 𝑘(𝛑𝑄+1, 𝛑𝑄+1))] 

(11) 

where b = [k(πQ+1, π1) … k(πQ+1, πQ)]. According to  [25], 

it can be proven that the 𝑃(𝐸𝑄+1|𝐷1:𝑄 , π𝑄+1) is also a 

Gaussian with mean value and standard deviation related with 

previous variables. The new configuration 𝛑∗ is estimated 

through Eq.(8), which is actually the integral of   𝐼(∙) and 

𝑃(𝐸𝑄+1|𝐷1:𝑄 , π𝑄+1), that is the probability that 𝐼(∙) follows.  

4. EXPERIMENTAL EVALUATION 

4.1. Dataset description & experimental setup 

The evaluation of the proposed method is conducted on the 
public AMPds dataset [26]. The AMPds contains electricity 

consumption data from a single house, in the greater area of 

Vancouver-Canada, including 21 individual circuits at one 

minute interval over a 2-year period. The selected appliances 

are of multi-state, making difficult its respective power load 

estimation (see Fig.2 with grey filled color). For each 

appliance, we have built a Bayes-BiLSTM. Bayesian 

optimization is used for optimally estimating the structure of 

each Bayes-BiLSTM.  
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Fig. 2. Comparison of the proposed method (green solid line) with 
CNN (black dotted line) as well as ground truth (in gray).  

 
Completed iterations 1 2 3 4 

# of BiLSTM Layers 1 1 2 1 

Hidden units 74 77 42/34 60 

Learning Rate 0.093 0.0022 0.0438 0.0024 

Fig. 3. Bayesian Optimization Results for CDE. 

4.2. Performance Evaluation and Comparisons  

Performance evaluation has been performed among Bayes-

BiLSTM and other approaches, such as (i) CNNs [15], [18], 

(ii) unidirectional LSTMs [20], [21], (iii) combinatorial 

optimization (CO) [5] and (iv) a Factorial Hidden Markov 

Model (FHMM) [12]-[14]. The last two are benchmarked 
techniques in NILM toolkit (NILMTK) [27] used in power 

society for comparing various NILM methods.  

Fig.2 shows signature identification examples for four 

selected appliances [clothes dryer (CDE), dishwasher 

(DWE), heat pump (HPE) and wall oven appliance (WOE)]. 

In this figure, we illustrate the performance of our proposed 

method compared to that of CNN as well as ground truth. As 

observed, our approach yields better performance in 

estimating not only ON/OFF states, but also more 

complicated energy patterns. This is important since it offers 

insight on whether a device is active as well as how it 
contributes to the total energy consumption. Table 1 presents 

the results of the comparison among the proposed method and 

other techniques based on Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE) and Normalized RMSE 

(NRMS), which are commonly used metrics for the 

evaluation of energy disaggregation [2]. As observed, the 

proposed method outperforms the compared ones. Our 

proposed Bayes-BiLSTM as well as unidirectional LSTM 

generally perform best mainly due to their capability to 

effectively model long range dependencies. Between the two, 

the Bayes-BiLSTM attains the minimum error, since it is 

capable to model non-causal behavior and has been optimized 

using the Bayesian framework. Fig.3 shows the CDE’s 

validation performance and the model’s hyperparameters 

respectively, for four successive iterations. The final iteration 

performs best, as expected. 

Table 1. Performance evaluation of the proposed method against 
other techniques for different objective metrics and appliances. 

  MAE RMSE NRMS MAE RMSE NRMS 

Methods Appliance 1: CDE   Appliance 2: DWE 

Bayes-BiLSTM 9.19 3.03 0.15 6.43 2.53 0.27 

LSTM 25.35 5.03 0.43 24.04 4.90 1.00 

CNN 34.42 5.87 0.48 32.67 5.72 1.24 

CO [7], [16] 117.53 10.84 1.26 156.23 12.50 4.41 

FHMM [15],[16] 129.57 11.38 0.90 313.68 17.71 4.44 

Methods Appliance 3: HPE Appliance 4: WOE 

Bayes-BiLSTM 106.56 10.32 0.59 8.06 2.84 0.75 

LSTM 161.74 12.72 0.55 15.82 3.97 0.89 

CNN 158.68 12.60 0.46 23.30 4.83 0.88 

CO [7], [16] 249.16 15.78 1.23 267.00 16.34 3.46 

FHMM [15],[16] 121.69 11.03 1.14 49.38 7.03 2.89 

In the following, we perform comparisons using the 

Estimated Energy Fraction Index (EEFI) and Actual Energy 

Fraction Index (AEFI) indicators defined as  

𝐸𝐸𝐹𝐼(𝑗) = √
∑ 𝑝

𝑗
(𝑛)𝑛

∑ ∑ 𝑝
𝑗

(𝑛)𝑗𝑛

 and  𝐴𝐸𝐹𝐼(𝑗) = √
∑ 𝑝

𝑗
(𝑛)𝑛

∑ ∑ 𝑝
𝑗

(𝑛)𝑗𝑛

   (12) 

where we recall that �̂�
𝑗

(𝑛) and 𝑝
𝑗

(𝑛) is the estimated and 

ground truth power load for the j-th appliance respectively. 

Fig.4 depicts the difference 𝐷𝐸𝐹𝐼(𝑗) = |𝐸𝐸𝐹𝐼(𝑗) − 𝐴𝐸𝐹𝐼(𝑗)| 

for the selected appliances over all compared methods, 

verifying that Bayes-BiLSTM yields the minimum value.  

 
Fig. 4. Comparisons using DEFI indicator.  

5. CONCLUSION 

In this paper, we propose a Bayesian-optimized Bidirectional 

LSTM regression model for NILM. The Bayes-BiLSTM 

model introduces: (i) a modular approach in NILM, which 

addresses dimensionality issues arising in cases of large 

number of appliances; (ii) a non-causal modeling framework 
taking into account the inherent structure, which 

characterizes the operation of multi-state appliances; (iii) a 

Bayesian optimization process ensuring the creation of a best 

fitting configuration for each appliance. Experimental results 

indicate the superiority of the proposed method compared to 

the current state-of-the-art. 
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