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ABSTRACT

The diagnosis (Detection, Estimation and Isolation) of incipient
faults, i.e. faults with severity variation < 10% of the healthy sig-
nal, plays an important role in health monitoring of complex system
for earliest maintenance. In this paper, Jensen-Shannon divergence
(JSD) is proposed to evaluate detection and estimation of incipient
fault severity in a multivariate data driven process. At first, the
dimensional space is reduced, thanks to the Principal Component
Analysis (PCA). Thus, the fault effect is theoretically modelled
using the JSD considering Gaussian distributed signals. Then, the
estimation of the fault severity is derived from this model. The
fault detection performances are then computed and compared with
the Hotelling’s T2 statistics. The fault estimation performances
validates the theoretical modeling for incipient faults in noisy envi-
ronments. An estimation error lower than 3% is obtained even for a
Signal to Noise Ratio (SNR) as low as 25dB.

Index Terms— Incipient Fault detection and estimation, Jensen-
Shannon Divergence, Detection and Estimation modelling, Perfor-
mances evaluation.

1. INTRODUCTION

Complex system health monitoring is becoming mandatory in dif-
ferent applicative sectors due to the wide development of condition
based maintenance [1]. One of its main goal is to avoid abnormal
stops of the process and ensure the system safety. For this purpose,
fault detection and severity estimation are crucial tasks to be able
to propose adapted maintenance operations. To ensure the earliest
actions, the faults must be detected and diagnosed as accurately as
possible at their earliest stage. Such faults type denoted incipient
faults are the most difficult ones to be detected and estimated prop-
erly [2, 3]. The knowledge necessary to proceed this fault diagnosis
can be based on different kind of information (physical, linguistic
and data driven modelling) leading to several approaches [4, 1]. For
these different approaches health monitoring is based on the evalua-
tion of several variables named features leading to the information on
the faulty behavior of the system. Detecting faults in such multivari-
ate process is then a particular task requiring specific methodologies
[5, 6].
In multivariate statistical analysis, Principal Components Analysis
(PCA) is a relevant technique for analyzing and simplifying data
sets. One of the main advantage of PCA is its capability to re-
duce the number of original variables into a principal subspace while

The authors would like to thank China Scholarship Concil for funding.

keeping the maximum amount of information [7]. PCA-based mon-
itoring methods are effective for handling highly dimensional, noisy
and correlated data from industrial processes, and provide superior
performance compared to the univariate methods. It has shown its
efficiency in fault detection and estimation [8, 9, 10, 11]. For eval-
uating the fault detection with PCA several popular criteria can be
used [8]. The Hotelling test, T2, is the most typical and efficient
criterion defined in the principal subspace [8, 12, 13]. This statis-
tic test has shown its capability in fault detection, but its efficiency
seems to be limited in noisy environments and also while the fault
severity decreases. Other approaches based on the evaluation of the
signals probability densities, like the Kullback-Leibler Divergence,
have been proposed [14]. Nevertheless, the important variability of
its value can compromise its use for instantaneous detection.
Jensen-Shannon divergence (JSD) is a sensitive technique that quan-
tifies the Shannon entropy excess of a couple of distributions with
respect to the mixture of their respective entropies [15, 16]. It has
been used in several scientific areas, such as bio-informatics, genome
comparison, protein surface comparison, image processing [16, 17,
18]. As this technique, based on the Shannon entropy computation,
is hardly sensitive to the local fluctuations or irregularities of the
probability densities, it may be suitable for incipient fault detection.
In this paper, based on the PCA framework, we propose to study
the capability of JSD for incipient fault detection and fault severity
estimation for a data-driven modelled process. We first propose a
theoretical modeling in the case of Gaussian distributions and then
evaluate the performances of the JSD in a noisy environment.
This paper is organised as follows. In section 2, the paper main con-
tributions are summarized to highlight the benefit of this work. In
section 3, the JSD technique is presented and its application in the
PCA framework is described. Then a theoretical model is derived
for both detection and estimation process in the incipient fault health
monitoring context. In section 4, the fault detection capabilities are
evaluated for an auto-regressive (AR) system. The performances are
then computed and compared to those obtained with the Hotelling
test. Various conditions of noise and fault severities are considered
and analysed. Section 5 concludes the paper.

2. PAPER CONTRIBUTION

This paper studies the performances of JSD, for incipient fault detec-
tion and estimation in several fault severity and environmental noise
conditions, using a multivariate data driven approach. These data
are processed in the PCA framework to take benefit of the dimen-
sion reduction and space projection properties. In this framework,
the fault effect on the JSD is theoretically derived considering Gaus-
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sian distributed signals. Under this assumption, the model is inverted
to obtain the theoretical estimation of the fault severity. The detec-
tion capability of the JSD and its performances are studied and com-
pared to the T2 ones in the same conditions. The superiority of JSD
for incipient fault detection is then proved and its efficiency in noisy
conditions is shown. The estimation error is shown to be lower than
3% even for a SNR as low as 25dB.

3. FAULT DETECTION AND ESTIMATION

In complex systems health monitoring, it is important to detect a
fault at its earliest stage. Such incipient faults are assumed to have
a severity variation lower than 10% of the healthy signal [2]. This
means that these slight variations can be in some cases covered by
the environmental noise (negative values of the Fault to Noise Ratio
as defined in [2]) and then induce missed detections. We propose
here to take benefit of the Jensen-Shannon good properties for in-
creasing the fault detection and estimation efficiency.

3.1. Jensen-Shannon Divergence for Diagnosis

3.1.1. Definition

Jensen-Shannon Divergence (JSD) is the increment of the Shannon
entropy most of the time used for evaluating the distance between
random graphs [15]. If we assume that f and q are two continuous
probability density functions (pdfs) of a random variable x, JSD can
be written as a function of the Shannon entropy (SE) [16] and its
value is denoted DJS such as :

DJS(f, q) = SE

[
f + q

2

]
− SE(f) + SE(q)

2
(1)

Based on the Kullback-Leibler Information (I), JSD is defined
as a symmetric operation such as :

DJS(f ||q) =
1

2
I(f ||M) +

1

2
I(q||M) (2)

where M is a mixture distribution such as M = 1
2
(f + q).

and I is the Information such as : I(f ||q) =
∫
f(x)log f(x)

q(x)
dx

In this paper, we assume that the monitored system is described
as a multivariate process defined with the following notations.
X[N×m] = (x1, · · · , xj , · · · , xk, · · · , xm) is the original data
matrix, where m is the number of original variables and N is
the data sample size. xk is then the kth variable as a vector
xk = [x1k, · · · , xik, · · · , xNk]T with i = [1, · · · , N ]. xj is the
vector denoted the faulty variable within the faulty interval [b,N ].
X̄[N×m] = (x̄1, · · · , x̄k, · · · , x̄m) is the centered and normalised
matrix.
g denotes the fault severity amplitude while ĝ is its estimated value.
More generally, let’s consider in the overall paper that the symbol
(∗) refers to faultless and noise-free data, (ˆ ) marks an estimated
value, (˜) mention the faulty and noise-free data function and (T) is
the transpose operator of a matrix.

3.1.2. Fault diagnosis in the PCA framework

For our study, PCA is used to decrease the dimensionality of the
problem. Its main steps are summarized in the following. First, the
sample data covariance matrix S is computed as:

S =
1

N − 1
X̄TX̄ (3)

where each vectors of the centered and normalized matrix X̄ are
obtained as:

x̄k =
xk − uk√

σ2
k

(k = 1, 2, · · · ,m) (4)

where uk and σ2
k are the mean and the variance of the kth variable.

Then the Principal Component scores matrix T[N×m] is obtained as
the linear transformation:

T[N×m] = X̄[N×m]P[m×m] = (t1, · · · , tk, · · · , tm) (5)

where P = (p1, . . . , pl, . . . , pm) is the eigenvectors matrix of S as-
sociated to the corresponding eigenvalues λk = [λ1, . . . , λl, . . . , λm].
Note that the first l component scores define the principal subspace,
and the remaining (m− l) define the residual subspace.

3.2. Fault detection model of JSD

For this study, let’s assume that the pdf of the first l principal scores
tk denoted qk and fk respectively in faulty and healthy conditions
are both normal distributions. Thus, we denote qk ∼ N (µ2, σ

2
2)

and fk ∼ N (µ1, σ
2
1), where µ1, µ2 are the means and σ2

1 , σ2
2 are

the variances of f and q respectively. The mixture distribution Mk

is defined as Mk = 1
2
(fk + qk).

In the PCA’s model, the variables are centered, the mean of the distri-
bution is then supposed unchanged after the occurrence of an incip-
ient fault [11], therefore µ1 = µ2. Otherwise, we know that for two
normal distributions which have the same mean, the mixture distri-
bution is unimodal [19]. In the particular case of our study for incipi-
ent faults, the modification of the pdf due to the fault is considered to
be slight. So we assume that the mixture distributionMk of the mix-
ture signal is Gaussian distributed such as Mk ∼ N (µM , σ

2
M ). The

mean µM and the variance σ2
M of Mk are calculated respectively as

(6) and (7):

µM =
1

2
(µ1 + µ2) = µ1 (6)

Using the derivation of the expectation function E(.), we obtain:

σ2
M = E(M2

k )− E(Mk)2 =
1

2
σ2
1 +

1

2
σ2
2 (7)

Under the normal distribution assumption, the JSD value can be de-
rived as:

DJS(f, q) =
1

4

[
log

σ4
M

σ2
1σ

2
2

+
σ2
1 + σ2

2 + 1
2
(µ1 − µ2)2

σ2
M

− 2

]
(8)

In the PCA framework, σ2
1 and σ2

2 can be seen as a linear combina-
tion of the signal data variance given by the eigenvalue λk with the
variance of an additive noise denoted σ2

v such as:

σ2
1 = λ∗

k + σ2
v σ2

2 = λ̃k + σ2
v (9)

where λ∗
k and λ̃k are respectively the eigenvalues of the kth latent

score in noise free healthy and faulty condition. We assume that the
relation between λ̃k and λ∗

k is:

λ̃k = λ∗
k + ∆λk (10)

where ∆λk is the eigenvalue bias due to the fault occurrence.
Based on equations (7), (9) and (10), the variance of Mk can be
written as:

σ2
M =

1

2

(
2λ∗

k + ∆λk + 2σ2
v

)
(11)

Combining the equations (8), (9) and (11), the JS divergence equa-
tion is developed as:

DJS(f ||q) =
1

4
log

(2λ∗
k + ∆λk + 2σ2

v)2

4(λ∗
k + σ2

v)(λ∗
k + ∆λk + σ2

v)
(12)
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DJS(∆λk) = DJS(0) +
∂DJS(∆λk)

∂∆λk
(0)∆λk +

1

2

∂2DJS(∆λk)

∂∆λ2
k

(0)∆λ2
k + · · · (17)

a3 =
∂DJS(∆λk)

∂∆λk
=

1

4

[
2

2λ∗
k + ∆λk + 2σ2

v

− 1

λ∗
k + ∆λk + σ2

v

]
(18)

a4 =
∂2DJS(∆λk)

∂∆λk
2 =

1

4

[
1

(λ∗
k + ∆λk + σ2

v)2
− 2

(2λ∗
k + ∆λk + 2σ2

v)2

]
(19)

3.3. Fault estimation model using JSD

In our study, we assume that the fault occurs on the variable xj and
affects the last (N − b) observations with a fault amplitude g. The
relation between ∆λk and g obtained from [11] is :

∆λk =
2

N
a1 × g +

1

N
a2 × g2 (13)

where a1 and a2 are derived in (14) and (15).

a1 = pjk

m∑
r=1

prk

(
N∑
i=b

(x∗ir − u∗
r)x∗ij

)
(14)

a2 = 3p2jk

N∑
i=b

(
x∗ij −

1

N

N∑
i=b

x∗ij

)2

(15)

Then, the theoretical equation for the fault severity estimation ĝ is:

ĝ =
−a1 +

√
a21 +Na2∆λk

a2
(16)

Eq.(12) can be seen as a function of ∆λk and is infinitely deriv-
able in the neighborhood of zero. The Taylor development of DJS

is derived and given in (17). We get its first order derivation (18)
and second order derivation (19) based on (12). Thus, limiting the
Taylor equation to the first two order terms, we obtain a quadratic
equation (20). Then, we can derive the approximated value of ∆λk

as the solutions of equation (20). In healthy conditions, the variance
change ∆λk is 0. The constants a3(0) and a4(0) can be simplified
as in (21), and then we get the solution (22). The final theoretical
estimation equation for ĝ directly depending on the JSD value is
obtained by combining (16) and (22):

DJS(∆λk) = DJS(0) + a3(0)∆λk +
1

2
a4(0)∆λ2

k (20)

a3(0) = 0 a4(0) =
1

4

[
1

(λ∗
k + σ2

v)2
− 2

(2λ∗
k + 2σ2

v)2

]
(21)

∆λk =

√
2DJS

a4(0)
(22)

ĝ =

−a1 +

√
a21 +Na2

(√
2 ˆDJS
a4(0)

)
a2

(23)

where ˆDJS in (23) is obtained using Monte Carlo simulations.

4. MODEL VALIDATION AND PERFORMANCE RESULTS

To validate the above derived theoretical models for JSD incipient
fault detection and severity estimation, let’s use a multivariate AR
system such as:

x(i) =

[
0.118 −0.191
0.847 0.264

]
x(i−1)+

[
1 2
3 −4

]
u(i−1) (24)

y(i) = x(i) + v(i) (25)
where u is the correlated input

u(i)=

[
0.811 −0.226
0.477 0.415

]
u(i− 1)+[
0.193 0.689
−0.320 −0.749

]
w(i− 1)

(26)

w is the matrix of two input uncorrelated Gaussian signals with zero
mean and unit variance. u is the vector of measured inputs, and y is
the output corrupted with an uncorrelated Gaussian noise with zero
mean and variance σ2

v . The vector of process variables X will be
made up of the measured inputs and outputs of the process at instant
value i, i.e. X =

[
y1(i) y2(i) u1(i) u2(i)

]T
The faulty signal is modeled as y2(i) = (1 + g)x2(i) + v2(i), v2
is the additive noise with a variance σ2

v . The fault occurs on the last
10% samples of y2. After application of PCA we obtain 4 principal
components with variances λ∗

k = {40.26; 4.9; 1.14; 0.17}. The first
principal component (t1) representing 86.6% of the original infor-
mation is then used for the following fault detection and estimation.

4.1. Fault Detection model validation

4.1.1. Fault Detection Capability

To highlight the detection capability of the JSD, we have affected
x2 with a fault corresponding to a bias on the signal amplitude. The
result is compared to the Hotelling test T2 in the principal subspace
composed of the first two principal components.

As an example, the fault detection results of T2 and JSD are
shown in Fig.1 for fault inducing a 80% bias on the signal amplitude
in the last 100 samples of y2 (N = 1000) and SNR = 40dB.
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Fig. 1. Fault detection capabilities for T2 and JSD

This example clearly shows the superiority of JSD compared to the
T2. Even if the fault severity is high, the detection with T2 is done
with numerous false alarms and missed detections. For smallest fault
severities, the detection with T2 test is obviously more difficult with
poor performances while it is possible accurately with JSD.
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4.1.2. Fault Detection Performances

To evaluate the detection performances for both T2 and JSD, the
receiver operating curves (ROC) are computed [20]. Several fault
severities are considered and expressed in terms of Fault to Noise
Ratio (FNR) [2] for SNR = 40dB. The performances of T2 are
depicted in Fig.2 while those of JSD are in Fig.3.
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Fig. 2. Fault detection results using T2 with SNR=40dB

Using T2, the performances are degraded while the FNR decreases
(which means lower fault severity). As defined in [2] for the con-
sidered SNR, the incipient case leads to negative or close to zero
FNR values. Indeed, these results clearly confirm that the T2 is
not efficient for incipient fault detection: the detection probabilities
are acceptable only in the case of large FNR values (FNR=65dB)
corresponding to high fault severities.
On the opposite, JSD shows (Fig.3) excellent detection perfor-
mances for small and incipient faults (FNR≥ −5dB): very good
probability of detection with a very low number of false alarms.
However, for lowest FNR the performances are seriously decreased.
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Fig. 3. Fault detection results using JSD with SNR=40dB

To highlight the noise effect on the JSD detection performances, the
ROC curves are evaluated for a given fault severity g = 0.02 with
several noise levels in the range SNR = [25 to 45] dB (see Fig.4).
JSD is efficient and has 100% detection probability for low noise lev-
els (SNR>35dB). When the noise level increases, up to SNR=30dB,
the detection performances decrease but are still acceptable. With
higher noise (SNR≤25dB), the performances are seriously reduced.

4.2. Fault estimation model performances

To evaluate the efficiency of the fault estimation model derived in
(23), we have plotted in Fig.5 the estimated fault severity (ĝ) versus
the real fault severity value (g).
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Fig. 4. Fault detection results of JSD for different SNR
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Fig. 5. Fault estimation results for different noise levels

The results highlight that the fault estimation leads to a slight overes-
timation of the fault severity. This overestimation provides a safety
margin in a sensible fault diagnosis context. To quantify this over-
estimation, the accuracy of the estimation is evaluated by computing
the relative error εg calculated as ĝ−g

1+g
(see Fig.6).
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Fig. 6. Estimation relative error for different noise levels

The relative error decreases either while the fault severity or the SNR
increases. For SNR = 25dB, the maximum error is 2.75%. For
g = 0.05 and SNR = 25dB, i.e FNR = −21dB, εg = 2.14%).

5. CONCLUSION

An approach based on JSD in the PCA framework for multivariate
process is proposed for incipient fault detection and severity estima-
tion. Theoretical models are derived under the assumption of Gaus-
sian distributed data. The fault detection performances of the JSD
are compared to the T2. The results clearly show that JSD is much
more sensitive and efficient. Even in noisy conditions the perfor-
mances are still acceptable. With the derived analytical model of the
JSD, the fault estimation is accurate. So, JSD is a new promising
solution for incipient fault diagnosis (detection and estimation) in
health monitoring of complex systems.
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