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ABSTRACT
Japanese text-to-speech (TTS) middleware for 32-bit microcon-
trollers (MCUs) such as Arm Cortex-M4 has been developed. Our
TTS middleware is based on HMM-based speech synthesis tech-
niques and includes an analyzer to generate pronunciation from texts
that consist of Kanji (ideographic) and Kana (syllabary) characters.
The middleware has been highly optimized for MCUs with the suc-
cinct data structure for data compression, fixed-point arithmetic for
fast processing and pipelined processing to reduce both the required
RAM size and response time. In this study, it is demonstrated that
a real-time TTS system implemented on a 14-pin DIP-size MCU
board that consist mainly of an MCU and external serial NOR flash
can synthesize 32 kHz-sampled speech sounds with quality compa-
rable to that of the conventional implementation of the HMM-based
speech synthesis. The peak current of the MCU board at that condi-
tion is approximately 15 mA.

Index Terms— text-to-speech, HMM-based speech synthesis,
microcontrollers, embedded systems

1. INTRODUCTION

Especially for compact devices, use of speech output is effective be-
cause it makes limitations of the size, shape or location of the devices
looser. Using text-to-speech (TTS) systems, devices can generate
various information with arbitrary text. However, many compact de-
vices have no network connectivity or only narrow-band network
connectivity like Bluetooth Low Energy (BLE) [1] or low-power
wide-area (LPWA) networks [2] mainly for low power consumption,
where transmission of speech data is impractical. For such devices,
a stand-alone TTS system must be implemented on the devices.

In recent years, many wearable sensors or the Internet of Things
(IoT) sensor devices are implemented using microcontroller units
(MCUs), which are one-package devices including many kinds of
components for applications such as CPU cores, clock generators,
static random-access memory (SRAM), flash memory, timers, digi-
tal I/O interfaces, analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs). As more complex data processing on the
devices is required, higher-performance MCUs, for example, MCUs
with 32-bit CPU cores, large RAM and flash memory, are used. If
standalone TTS software for such MCUs is provided, the devices
can easily have speech output functions at small additional cost for
flash memory for storage of the TTS program and data, and a loud
speaker and amplifier for the loud speaker for speech sound out-
puts. However, how to realize standalone TTS software for MCU is
not straightforward because usable computational resources are still
limited compared to those required for conventional TTS software.

In this paper, our TTS middleware developed for MCUs is in-
troduced. It is based on HMM-based speech synthesis [3] since it
can generation practical quality of sounds with a small footprint.
Although some HMM-based TTS systems for embedded devices

has already been reported [4, 5], the target processors were not for
low power consumption. By contrast, our target processor is Arm
Cortex-M4, which is one of the popular 32-bit CPU cores for MCUs.
Since the clock frequency of the CPU and the memory size of the
MCUs are often limited, our TTS middleware has been highly op-
timized for MCUs. Nevertheless, our TTS middleware maintains
speech quality of our former TTS software for smartphones and PCs
based on HMM-based speech synthesis since the similar algorithms
and data are basically used. Furthermore, to reduce the required
RAM size and shorten the response time, the processing of HMM
speech synthesis is pipelined where parameter generation and wave-
form generation are alternately executed. Also, for evaluation in this
study and practical applications in future, a miniature MCU board
as the target platform of our TTS middleware was developed in this
study. The size of the board is comparable to 14-pin dual inline
packages (DIP).

The remainder of the paper is organized as follows. First, the
specifications of the target MCU board are explained in Section 2.
Then, in Section 3, the structure of our TTS system is introduced
for later discussion. The techniques used in our TTS middleware are
explained in Section 4. Section 5 shows results of a subjective eval-
uation and performance evaluation with the miniature MCU board.
Finally, Section 6 concludes this study.

2. MINIATURE MCU BOARD FOR TTS SYSTEMS

For practical applications in future, a miniature MCU circuit board
was newly developed for our TTS middleware. The MCU was the
smallest chip (100-ball, 4.618 mm × 4.142 mm, 0.4mm-pitch wafer-
level chip-size package (WLCSP)) in MCUs that were easily avail-
able from the market and provided performance enough for real-time
processing of the middleware. Since the internal flash memory size
of the MCU was insufficient for our TTS middleware, which requires
more than 4 megabyte random-accessible read-only data storages
(while the requested size is significantly smaller than those of other
Japanese TTS systems), an external NOR flash memory with quad-
serial peripheral interface (SPI), which consists of six signal wires,
was also adopted. The package size of the flash is 6 mm × 5 mm.
Table 1 shows the specifications of the MCU board.

Figure 1 schematically illustrates the signal wiring of the MCU
board. Seven pins of the board can be used for general-purpose
I/Os (GPIOs), asynchronous serial communication or Inter-IC (I2C)
buses [6], which is a two-wire dual-direction communication proto-
col. In the current version, I2C is mainly used to control the TTS
system from other devices. The TTS outputs are analog outputs gen-
erated by the internal DAC of the MCU. Also, an external 32-kHz
crystal is connected to the MCU to calibrate the frequency of the
master clock generated by a phase-lock loop (PLL) circuit integrated
in the MCU.

Figure 2 shows a top view of the MCU board. By reduction
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Table 1. Specifications of the target MCU board
MCU STM32L496VGY6 (STMicroelectronics)

Core ARM Cortex-M4F (max freq. 80 MHz)
SRAM size 320 KiB
Flash size 1 MiB

Quad SPI flash MX25R6435F (8MiB) (Macronix)
Crystal 32.768 kHz
Operating voltage 1.8 to 3.6 V
Dimensions 17.78 mm × 7.62 mm
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Fig. 1. The signal wiring of the target MCU board

17.78 mm

7.62 mm

Fig. 2. Top view of the target MCU board (1:1 scale)

of the number of the devices on the board and signal traces, the
board could be implemented by a 14-pin DIP-size 4-layer print cir-
cuit board. Because all devices are mounted on one side of the board
and all terminals of the board are located at the sides of the board,
the board can be mounted on other print circuit boards as a surface-
mount device.

3. STRUCTURE OF OUR JAPANESE TTS SYSTEM

In general, input of Japanese TTS systems is text that appears Kanji
(ideographic) and Kana (syllabary) characters simultaneously. Since
phonemes corresponding to Kanji character depend on the neighbor-
ing characters in most cases and the context of the text in some cases,
simple mapping rules from a Kanji letter to phonemes are not appli-
cable to Japanese TTS systems, i.e. processing based on the word
(or longer) unit is needed to predict pronunciation of Japanese text.
Because there is no space between words in sentences in Japanese,
morphological analysis is required to split a sentence into a sequence
of words. In addition, prosodic (e.g. accent) expression plays very
important role in naturalness of Japanese speech sounds while ac-
cent rules of Japanese are complex dependent on words [7, 8]. Con-
sequently, text analysis in our Japanese TTS system is fundamen-
tally based on morphological analysis with a large morpheme dictio-
nary in which phonemic and prosodic information is bound to cor-
responding morpheme entries. The morphological analysis is based
on the minimum-cost method that can be performed by dynamic pro-
gramming.

For later discussion, processing in our Japanese TTS system is
divided into three parts. Figure 3 schematically shows the parts. The
first part is text processing where input text is converted to phone-
mic and prosodic symbols for speech synthesis. As previously men-
tioned, the process is based on morphological analysis. On the other
hand, for the output, some notations of the Japanese phonemic and

Text processing
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text

speech sounds

symbols for speech synthesis 
(JEITA IT-4006)

speech waveforms

Parameter prediction with 
decision trees

Parameter trajectory 
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Waveform generation

HMM-based 
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Fig. 3. The flow of the processing in our TTS system

prosodic information for speech synthesis have been standardized.
In our TTS system, the standard of Japan Electronics and Informa-
tion Technology Industries Association (JEITA) IT-4006 [9], which
is based on Kana letters with some prosodic symbols, is used. The
second part is speech waveform generation from speech synthesis
symbols. In this study, HMM-based speech synthesis techniques are
basically used for this part. Moreover, the HMM-based speech syn-
thesis is divided into three subparts. They are parameter prediction
with decision trees, parameter trajectory generation and waveform
generation in this discussion. The parameter trajectory generation
and waveform generation are pipelined. It is explained in Section
4.2. Finally, the third part is digital-to-analog (D/A) conversion of
the synthesized speech waveforms. The first and the second parts
are processed in the TTS middleware while the third one is out of
the middleware due to hardware specificity.

4. KEY TECHNIQUES OF OUR TTS MIDDLEWARE

4.1. Compression of dictionary data for text analysis

Different from general-purpose text analyzers to process many sen-
tences, longer processing time for text analysis may be acceptable
for TTS. For example, a wait less than a second for the text process-
ing would be less problematic for most embedded TTS applications.
Reduction of the system footprints rather than improvement of the
processing speed should be focused on for most embedded TTS sys-
tems.

One of adopted techniques for that sense is use of a succinct
data structure [10], in which bit-wise operations are used. In our
system, indices for a common-prefix search in morphological anal-
ysis is implemented by a trie based on the level-order unary degree
sequence (LOUDS) [11], which is based on succinct data structures.
Thus, our 244k-morpheme dictionary is compressed into an approx-
imately 5.5-megabyte data structure that is directly used for morpho-
logical analysis. If the double-array trie [12] is used, the size of the
indices alone becomes about 10 megabytes. For example, the to-
tal size of a 292k-morpheme dictionary of XIMERA [13] was about
39.4 megabytes. Although the access speed for the LOUDS is signif-
icantly slower than access for fast methods such as the double-array
trie, the performance is sufficient for text analysis in embedded TTS
systems even where the data are located at the external serial NOR
flash. The performance is demonstrated in Section 5.

Moreover, conjugated forms of morphemes are dynamically
generated in our TTS system. In Japanese, there are conjugated
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forms of words in verbs, adjectives, adverbs and auxiliary verbs.
Most modern morphological analyzers use morpheme dictionaries
in which conjugated forms are also registered as other morphemes
in advance [14]. Although the dynamic generation makes the system
slower, the number of entries of the morpheme dictionary can be re-
duced. For example, our 244k-morpheme dictionary is comparable
to a 337k-morpheme dictionary including all conjugated forms.

4.2. Computational cost reduction for HMM-based speech syn-
thesis

Since computation of floating-point numbers is still costly1, fixed-
point arithmetic should be taken into account for systems using
MCUs. For maximum-likelihood parameter generation (MLPG)
[15], we use an algorithm to reduce rounding errors caused by the
fixed-point arithmetic where differential trajectories from the mean
sequences of the HMM outputs rather than the target trajectories are
calculated [16].

Moreover, computational costs for waveform generation are of-
ten problematic in HMM-based speech synthesis. Some speech syn-
thesizers use linear spectral pair (LSP) coefficients [4,17] rather than
cepstrum. Although use of autoregressive (AR) filters whose coeffi-
cients are calculated from the LSP coefficients can reduce the com-
putational costs, spectral enhancement methods to improve the qual-
ity of the oversmoothed sounds caused by the HMM-based model-
ing are not straightforward for LSP-based systems [17]. By contrast,
spectral enhancement in cepstrum-based systems is easily achieved
by amplification of low-order coefficients of the cepstrum. It is sim-
ilar for melcepstrum, which is cepstrum on the Mel scale. Thus,
melcepstrum is adopted to simplify the system.

For systems with melcepstrum, mel-log spectral approximation
(MLSA) filters [18] can be used for speech waveform generation be-
cause the parameters of the filters correspond to the coefficients of
melcepstrum. However, the computational cost of the MLSA filters
is not low especially for embedded devices. Therefore, we also use
a different waveform generation method from melcepstrum [19] to
reduce the computational costs. It is based on sinusoidal synthe-
sis [20] performed on a subband coding system. In this method, the
power spectrum is first calculated from melcepstrum, and the ampli-
tudes of the sinusoids that are harmonic components of the funda-
mental vibration are then calculated from the power spectrum. Be-
cause subband codes for sinusoids can be easily calculated with a
reduced sampling rate, the computational cost for waveform gener-
ation can be greatly reduced even when the cost for the decoding of
the subband codes is also taken into account. The used filter bank of
the subband coding system is based on the pseudo quadrature mirror
filter bank [21]. In our middleware, the same filter coefficients as
MPEG audio [22] are used for the filter bank, where the length is
512 taps. In addition, aperiodic components of speech sounds can
be also easily synthesized by the filter bank. This is because the fil-
ter for each subband can also be used as a simple bandpass filter by
setting independent noise trains for each subband. Another superi-
ority of this method is that possible ranges of values at each point
of the filters can be easily estimated because all processing consists
of weighted sums. In our implementation, all operations can be exe-
cuted without FPU hardware or floating-point library software.

4.3. Pipelined processing including parameter generation

In our former version of TTS software for smartphones or PCs, all
trajectories of parameters for one sentence were calculated before
the step of waveform generation. In practice, its computational time

1The MCU on the target board has a floating-point unit (FPU) but
floating-point calculation is still costlier than integer calculation.

was not problematic because the calculation by using our algorithms
explained in 4.2 was sufficiently fast for smartphones and PCs. How-
ever, the storage size for the trajectories of one sentence is not small
for RAM in MCUs. Therefore, as a technique for the middleware for
MCUs, pipelined processing with parameter generation and wave-
form generation is newly introduced. It should be noted that the D/A
conversion can be parallelly performed by MCU’s hardware. By the
pipelined processing, required RAM size can be reduced and become
irrelevant to the length of the sentence. Moreover, the latency of the
system from the input of texts to the output of speech sounds can
be also reduced. By contrast, the text analysis is not pipelined be-
cause it seems inefficient. Since the length of the context that can be
considered in the text analysis is limited in a pipelined version, the
accuracy of the analysis can deteriorate. Also, decision tree process-
ing in the HMM-based speech synthesis is not pipelined because the
intermediate label data for the decision tree processing, which are
called the full-context labels, include long-term information such as
sentence-length context information.

For parameter trajectory generation, a recursive algorithm simi-
lar to the recursive-least-square (RLS) method has already been pro-
posed [23]. However, it is costlier than the conventional MLPG al-
gorithm where computation is proportional to the square of the con-
sidered frame length in parameter updating. Different from speech
conversion, when parameter generation starts, all target phonemic
and prosodic symbols have already been generated in our system.
It means that short latency between the input time of each symbol
and the output time of the corresponding speech waveform piece is
unnecessary. Therefore, our TTS system instead uses the conven-
tional algorithm where the calculation is repeatedly preformed for
the limited period of the sentence with short overlap. In this study,
the length of the overlap is two frames while the period of the calcu-
lation is 33 frames where the frame period is 5 ms. It was determined
by preliminary listening of synthetic sounds.

5. EXPERIMENTS

5.1. Setup for the TTS system

For the HMM-based speech synthesizer in our TTS system, HMM
was trained from 10.6-hour speech sounds spoken by a female nar-
rator. The features for speech synthesis are 31st-order melcepstrum
and fundamental frequency (F0) with voiced or unvoiced informa-
tion. The features include their delta and delta-delta features for the
MLPG. The sampling frequency of the training date and output was
32 kHz. Training of HMMs was conducted by using the HTS [24].
All phone labels for the training were automatically generated from
the manual transcriptions written in the JEITA IT-4006 format from
speech sounds. It means that not only phonemic information but also
prosodic information was accurate in the labels. Each phone HMM
has a 5-state left-to-right structure. To build a compact model for
the MCU board, the weight parameter of the minimum description
length (MDL) criterion in the context clustering for states tying of
HMMs was changed to 2.0 from 1.0 as the default. Consequently,
the total numbers of states of HMMs were reduced to 981, 5205 and
9694 for duration, melcepstrum and fundamental frequency, respec-
tively, while those in the default setting were 1832, 7957 and 20895,
respectively. On the MCU board, the total size of the HMM was
approximately 2.2 megabytes.

On the other hand, a 244k-morpheme dictionary was used for
the text analysis. The size of the dictionary was approximately 5.5
megabytes. The HMM and dictionary data were stored on the exter-
nal serial NOR flash memory on the MCU board.
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5.2. Subjective experiment

To examine speech quality by our TTS system, a subjective exper-
iment was conducted. 12 listeners evaluated quality of synthetic
sounds in 5 grades (1 = bad, 2 = poor, 3 = fair, 4 = good, 5 = excel-
lent). Ten synthetic sounds for the first ten sentences of the Group J
of ATR 503-sentence speech corpus [25], which were not included
in the training data for the HMMs, were examined in this experi-
ment. For comparison, synthetic sounds by hts engine API Version
1.10 [26], which is a widely-used implementation of an HMM-based
speech synthesizer but difficult to use on MCUs, were also evaluated.
In a preliminary comparison on a PC, our middleware was approxi-
mately ten times faster than hts engine API. Moreover, the two sets
of HMMs that were (a) an HMM set that were trained where the
weight parameter of the MDL criterion was set to 1.0 as the de-
fault configuration and (b) an HMM set that were trained where the
weight parameter was set to 2.0 to make a compact model for the tar-
get MCU board were used in this experiment. Consequently, forty
sounds were presented for each listener. In this experiment, the tar-
get label of speech synthesis had been corrected by hand, i.e. the
accuracy of the text analysis did not affect the results. All the sounds
were 16-bit precision. The sounds were ordered randomly for each
listener and presented to both ears through headphones in a silent
room.

Figure 4 shows the MOS of the ten sentences for the four condi-
tions. Although use of the compact model might degrade quality of
sounds, no significant difference was found among all the conditions.
At least, significant deterioration of the speech quality was not ob-
served in the processing of the parameter generation and waveform
generation in our TTS system.

5.3. Evaluation of processing speed

In this experiment, processing times for synthesizing of the 503 sen-
tences in the ATR corpus were measured. To measure the processing
times precisely, the cycle count register implemented on the MCU
was monitored. Each clock cycle of the MCU increments the reg-
ister. To measure the cycle counts for each part of the processing,
some checkpoints were added to the program of our TTS middle-
ware. In this experiment, the TTS processing was split into six cat-
egories: text analysis, decision tree processing for HMMs, initial
parameter generation, initial waveform generation, parameter gen-
eration and waveform generation, where “initial” means processing
before the D/A conversion starts. Overheads to read the cycle count
register were ignored in this study because they were slight. The
clock frequency of MCU was 80 MHz and the clock for the serial
flash memory was 40 MHz.

Figure 5 shows average and the maximum (i.e. worst) relative
processing times where the duration of the synthetic speech sound
of each sentence equals 1. The figure indicates that our TTS system
can generate speech faster than the real time. For example, the time
for the (pipelined) parameter generation and waveform generation
is 0.544 times the real time even in the worst case. Consequently,
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Fig. 5. The average and maximum relative processing times of the
TTS system implemented on the MCU board. The length of hori-
zontal bars corresponds to the average time.
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Fig. 6. The response time of the TTS system implemented on the
MCU board.

the sizes of buffers for not only the pipelined processing but also
generated waveforms can be reduced by temporally synchronizing
the TTS processing to the D/A conversion timings.

On the other hand, figure 6 shows the relation between the dura-
tion of the sentence and the response time of the TTS system. Note
that the response time in the figure does not include the delay time
in the D/A conversion. The delay time is roughly proportional to
the duration of the sentence because the text analysis and decision
tree processing were not pipelined. Nonetheless, the response time
of our TTS system implemented on the MCU board seems to be fast
enough for most practical uses. For example, the delay time is only
about 0.5 seconds even where the duration of the sentence is 10 sec-
onds.

In the condition of this experiment, the peak current of the MCU
board is less than 15 mA where VDD is 1.8 V. If applications accept
a lower clock frequency, the current can be reduced further. In most
applications with a loud speaker, the power consumption of our TTS
system may be negligible because the power consumption for the
loud speaker dominates the total power consumption.

6. CONCLUSION

Japanese TTS middleware and a real-time TTS system by the mid-
dleware implemented on a miniature MCU board whose size was
comparable to 14-pin DIP have been introduced. Experiments
showed that the quality of the sounds by the TTS system was compa-
rable to that of the conventional implementation and the TTS system
could achieve sufficient throughput for real-time processing and a
short response time for 32-kHz sampled waveforms. The consump-
tion current in this condition was only about 15 mA.
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