
LEARNING EFFICIENT SPARSE STRUCTURES IN SPEECH RECOGNITION

Jingchi Zhang? Wei Wen? Michael Deisher† Hsin-Pai Cheng ? Hai Li? Yiran Chen?

? Duke University, Durham, North Carolina, USA
†Intel Corporation, Hillsboro, Oregon, USA

ABSTRACT

Recurrent neural networks (RNNs), especially long short-
term memories (LSTMs) have been widely used in speech
recognition and natural language processing. As the sizes of
RNN models grow for better performance, the computation
cost and therefore the required hardware resource increase
rapidly. We propose an efficient structural sparsity (ESS)
learning method for acoustic modeling in speech recognition.
ESS aims to generate a model that offers higher execution
efficiency while maintaining the accuracy. A three-step train-
ing pipeline is developed in our work. First, we apply the
group Lasso regularization method during training process
and learn a structural sparse model from scratch. Then the
learned sparse structures will be fixed and cannot be changed.
Finally, we retrain the model and update the nonzero param-
eters in the model. We applied our ESS method on classic
HMM+LSTM model on Kaldi toolkit. The experimental re-
sults show that ESS can remove 72.5% weight groups in the
weight matrices when slightly increasing the word error rate
(WER) 1.1%.

Index Terms— efficient structural sparsity, long short-
term memory, acoustic modeling, speech recognition

1. INTRODUCTION

Recently, speech recognition models based on recurrent neu-
ral networks (RNNs), especially the long short-term mem-
ory (LSTM) models have become more popular in automatic
speech recognition (ASR) [1]. Many different types of LSTM
structures have been applied to various speech recognition
tasks successfully, such as deep LSTM (DLSTM) [2], bidi-
rectional LSTM (BLSTM) [3] and LSTM with recurrent pro-
jection layer (LSTMP) [4]. However, to further improve the
model performance, common approaches are increasing the
depth of the LSTM layers and and increasing the size of the
matrices in LSTM model, which lead to higher computation
cost and prolonged inference time.

In recent years, there have been extensive studies on ac-
celerating deep neural networks (DNNs). For example, the
pruning method [5] and sparsity regularization [6] can effec-
tively reduce the volume of the weight parameters in convo-
lutional neural networks (CNNs). Without considering the

model structure, these methods zero out the elements below
certain thresholds as they have negligible impact on the model
accuracy. The produced matrix features non-structural spar-
sity as zero parameters are randomly distributed. Such non-
structural sparse models can achieve only very limited com-
putational speedup on hardware, even under a high sparsity
level of more than 90% [7]. To bridge the discrepancy in
algorithm and hardware implementation, Wen et al. [7] pro-
posed a framework which can learn compact sparse structures
such as filters, channels and layers in CNNs.

Learning sparse structures in RNNs is more difficult. In
RNNs, all the time steps share a recurrent unit. Compressing
the recurrent unit influences all the time steps. Thus, it is chal-
lenging to apply sparsity methods while maintaining accept-
able accuracy. Sharan et al. [8] introduced a pruning method
that can reduce 90% of the connections in RNN. However,
the speedup of the actual computation could be limited due to
the non-structural sparsity. The latest intrinsic sparse struc-
tural learning [9] is able to learn a sparsity structure in LSTM
models and reduce the model size.

This work targets to improve the execution efficiency
of acoustic modeling in speech recognition. We propose
an efficient structural sparsity (ESS) learning method for
HMM+LSTM based acoustic model. ESS attempts to learn
sparse structures according to hardware requirements. ESS
is applied on the training process by adding a purposely-
designed group Lasso regularization term on the loss func-
tion. Using this new loss function, both accuracy and sparsity
are optimized during the training process. As such, ESS pro-
duces models with a similar accuracy but in a very sparse
structure and the computation is greatly accelerated on the
hardware.

We tested the proposed ESS method on the classic
HMM+LSTM model. The experiment using the nnet3 toolkit
in Kaldi [10] showed that the new model trained by using
our method can reach a sparsity level of 72.5% with 1.1%
increase in the word error rate (WER).

2. RELATED WORK

There have been a lot of studies on removing redundant struc-
tures in CNNs. For example, by applying l1 regularization
on the loss function in training procedure, a large portion of

2717978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

parameters in CNNs can be reduced [6]. Connection prun-
ing method [5] can reduce 90% of the weight parameters and
keep the accuracy at the similar level. Pruning methods have
be successfully applied to RNNs [8] and compressed gated re-
current unit (GRU) models. Recently, the use of group Lasso
regularization has been proved to be an effective way to re-
move structures in CNNs, such as neurons, filters, channels
and layers [7]. The group Lasso based sparsity method also
has been successfully applied to RNN and LSTM [9]. The
approach can learn a structural sparse model and accelerate
the computation without any specific hardware deployment.

3. LEARNING EFFICIENT SPARSE STRUCTURES

3.1. Computational efficiency explanation

Conventional sparsity learning or pruning methods produce
non-structural sparsity or connectivity, which results in poor
data locality and therefore has limited or even negative accel-
eration on the computation.

Fig. 1 illustrates the difference in the data locality induced
by non-structural sparsity model and structural sparsity model
and the corresponding execution in CPU. It can also be ap-
plied on GPU because of the same properties. The dark gray
blocks in the figure represent the features that are needed in
the computation. The striped blocks denote the features that
are not necessary in computation. In a non-structural sparse
model, as illustrated in Fig. 1(a), when the CPU fetches the
first needed feature, it automatically fetches all the features
in the weight group into the cache for improving execution
parallelism. Unfortunately, those features are not necessary
in the computation. When another feature is needed in the
next step, the data might not have been cached yet so the
CPU needs to fetch it from memory. Compared to getting
data from the local cache directly, fetching from memory is
much more time-consuming. As can be observed that non-
structural sparse models cannot make good use of memory
locality, which severely lengthens its execution time.

On the contrary, a structural sparse model locates all
the required weights in the same cache line. As shown in

(a) Non-structural sparsity (b) Structural sparsity
Fig. 1: An illustration of the data locality induced by non-
structural and structural sparsity models and the correspond-
ing impact on hardware execution.

Fig. 1(b), the weights in the same group will be fetched into
the cache together. The weight group without any needed
weights is omitted. In this way, much less data exchange
occurs between the CPU and memory. And a large weight
matrix with structural sparsity takes less computation time to
calculate all the weight groups. This approach improves the
cache locality and accelerates the computation.

3.2. An overview of ESS

Our proposed ESS learning method is composed of three
steps. As shown in Fig. 2, the process starts with the struc-
tural sparsity learning from scratch. At the end of this step,
a sparse LSTM model at the desired sparsity level will be
generated. The accuracy of the model is relatively low and
will be recovered in the following two steps. In the second
step, we fix the zero parameters learned in the previous step to
prevent the structural sparsity from updating in the next step.
At the end, the sparse model will be used as an initial input
model and be trained for additional epochs. Here, the extra
group Lasso regularization term in the first step is disabled.
The model is retrained to recover the accuracy. Because all
the zero parameters are fixed in the second step, only nonzero
elements can be updated. In this way, the learned sparsity
is maintained while the accuracy gradually increases. The
pseudocode of ESS is shown in Algorithm 1.

3.3. Learning structural sparsity

State-of-the-art LSTM-based speech recognition models use
a deep LSTMP architecture to model temporal sequences [4].
The weight matrix w in a LSTMP unit is usually a very large
matrix consisting of several weight group matriceswk. Due to
its large size, calculating w is expensive and time-consuming.
The optimization goal is to remove as many weight groups
wk as possible and form a desired sparse structure. Learning
sparse structure in LSTM was proven to be effective in [9],
and we extend it here to acoustic models.

In detail, a group Lasso penalty is added into the loss func-
tion to encourage sparse structure. The penalty term is:

R(w) =

K∑
k=1

||wk||2, (1)

Fig. 2: The three-step training pipeline of ESS.

2718

Algorithm 1: ESS: efficient sparse structure algorithm

Input : weight matrix w(0), sparsity regularization
coefficient λ, threshold τ , learning rate η

Output: updated weight matrix w
1 add group Lasso regularization on the loss function
2 for iteration i = 0, ...,M − 1 do
3 estimate gradient g(i) of w(i) on loss function
4 update: w(i+1) ← w(i) − η ·

(
g(i)
)

5 zero out each element in w(i+1) whose absolute
value is smaller than τ

6 end
7 remove group Lasso regularization on the loss function
8 for iteration j =M, ...,M +N − 1 do
9 estimate gradient over w(j): g(j)

10 zero out gradients in g(j) w.r.t. zero parameters in
w(j)

11 update w(j+1) ← w(j) − η · g(j)
12 end
13 return (w(M+N))

where || · ||2 is the l2 norm. The step to update each weight
group wk in Stochastic Gradient Descent (SGD) training be-
comes:

wk ← wk − η ·
(
∂E(w)

∂wk
+ λ · wk

||wk||2

)
, (2)

where η is the learning rate, E(w) is the loss calculated by
the original loss function and λ is a positive coefficient which
controls the degree of structural sparsity. In Equation (2), vec-
tor wk represents a weight group matrix. − wk

||wk||2 denotes the
group Lasso penalty applied on wk. Moreover, − wk

||wk||2 is a
unit vector along a direction opposite to wk, which makes wk

squeezed towards zero. Although a large portion of weight
groups can be forced to zero, not all of them can. When
there are more zero weight groups in w, the accuracy of the
model could decrease so that ∂E(w)

∂wk
in Equation (2) becomes

larger, preventing the loss function from continuing to de-
crease. The training eventually converges when it reaches a
balance between the accuracy term ∂E(w)

∂wk
and the sparsity

term − wk

||wk||2 . The trade-off between the accuracy and spar-
sity is controlled by the parameter λ.

To avoid the denominator becoming zero in the group
Lasso penalty term − wk

||wk||2 , we add a tiny constant ε into
the computation of l2 norm, such as:

||wk||2 ,
√
ε+

∑
j

(wkj)
2
, (3)

where wkj is the j-th element in wk. The constant ε prevents
the results of l2 norm from being zero. In our experiment, ε
is set to be 10−8.

Although wk is squeezed gradually in each iteration, it is
hard for wk to reach exactly zero because of the continuous
fluctuation in updating. Fortunately, wk will be dynamically
stabilized and fluctuate around zero. In order to zero out these
small weight groups completely, we set a threshold τ and the
parameters smaller than τ are removed during each iteration.

3.4. Fixing zero and retraining nonzero parameters

Learning sparse structure potentially degrades the model ac-
curacy. Intuitively, a sparse model containing more zero el-
ements could have a lower accuracy. To maintain the accu-
racy, we include an accuracy restoring step to the training
process. Once the model reaches the desired sparsity rate,
we fix the obtained sparse structure and switch to the basic
training method to improve its accuracy. In SGD training,
for instance, the step to update the weight group wk can be
expressed as

w
(n)
k ← w

(n)
k − η ·

(
∂E(w)

∂w
(n)
k

· θ(wk)

)
, (4)

where

θ(ξ) =

{
0, ξ = 0
1, ξ 6= 0

. (5)

By adding the θ function, the zero elements will remain
unchanged and only nonzero elements will be updated to
minimize the loss function. In this way, the sparse structure
learned in the previous step is kept meanwhile the model
accuracy is improved.

4. EXPERIMENTS

The open-source Kaldi toolkit is used to conduct experiments
in this work. Specifically, we use the model generated by
nnet3-based recipe provided in Kaldi tedlium/s5 r2 as base-
line. The only difference is that we did not use i-vectors.
The training corpus for the experiments is TED-LIUM (the
second release) [11]. It contains 207 hours, 1475 TED talks
from 1242 different speakers. The corpus is split into three
sets: training, development and testing.

The model topology is described in Kaldi tedlium/s5 r2.
It contains three LSTMP layers, indicating that the proposed
structural sparsity can be applied to three large matrices. We
adjusted our sparsity method based on the target hardware ar-
chitecture in order to get the best speedup performance.

4.1. Hardware implementation

The target hardware platform is inspired by the Intel R© Gaus-
sian Neural Accelerator (GNA) [12]. GNA consists of par-
allel integer compute cores, a memory mapping unit, DMA
units, layer sequencing controller, and layer processing con-
troller [13]. It is capable of inference processing for large

2719

Table 1: The model sparsity and WER under different spar-
sity configurations

Method λ Sparsity in LSTM Sparsity WER

group-8 1 2 3 mean develop test

baseline 0 0 0 0 0 11.5% 11.4%

ESS 0.15 39.1% 59.6% 36.0% 45.8% 12.0% 11.8%
ESS 0.35 62.2% 82.5% 68.6% 72.5% 12.6% 12.6%
ESS 0.65 74.9% 88.5% 71.7% 78.9% 13.3% 13.3%

Method λ Sparsity in LSTM Sparsity WER

group-16 1 2 3 mean develop test

baseline 0 0 0 0 0 11.5% 11.4%

ESS 0.15 36.6% 56.7% 37.2% 44.6% 11.8% 11.7%
ESS 0.35 55.8% 77.0% 63.8% 67.0% 12.5% 12.4%
ESS 0.65 67.9% 84.9% 70.4% 75.4% 13.1% 13.1%

neural networks used in continuous speech recognition with
high performance and low power consumption. For this hard-
ware, weight matrices are represented as int8 or int16 and
the hardware fetches data in chunks. So weight groups such
as 8 int16 elements or 16 int8 elements are amenable to
the accelerator memory architecture. If the matrix cannot be
divided by 8 or 16, the programmer could apply zero padding
to the matrix.

4.2. Experiment results

In our experiment, sparsity is defined as the ratio of the num-
ber of zero groups to the total number of weight groups. We
applied ESS to all three LSTMP layers in the model. Group-
ing by both 8 int16 elements (group-8) and 16 int8 ele-
ments (group-16) were explored for generalization.

Table 1 summarizes our experimental results, which de-
tails the sparsity of each LSTMP layer as well as the entire
model.

When applying group-8 and setting the sparsity parameter
λ to 0.35, the overall sparsity of the LSTM model is 72.5%. In
theory, the model can achieve up to 3.64× speedup as 72.5%
of the calculation can be omitted. Compared to the baseline,
the WER of the ESS model increases 1.1% and 1.2% on the
development and test sets, respectively. It is also worth point-
ing out that when a model is trained with λ = 0.15, the WER
only increases 0.4%. Our results show that the ESS method
can keep the WER at a similar level and dramatically decrease
the number of nonzero weight groups.

Table 1 also shows that as λ increases, the sparsity level
grows while speech recognition accuracy drops. It reflects
the trade-off between sparsity and WER. However, further
increasing λ doesn’t help to improve the sparsity level at a
corresponding rate. For instance, when λ = 0.65, the model
sparsity reaches to 78.9%, which is high but not significantly
larger than 72.5% obtained at λ = 0.35. Compared to the

(a) group-8 (b) group-16
Fig. 3: The visualization of weight matrices in LSTM units
learned by ESS with λ = 0.35.

sparsity gain, WER increases more. In brief, when λ is small,
sparsity increases rapidly with minor accuracy loss. As λ gets
larger, sparsity grows slower and WER increases faster. It can
be intuitively explained that with fewer parameters, there is a
limit on the WER that a model can reach. In practice, we tend
to keep λ below a threshold to achieve the best effectiveness.

Fig. 3 visualizes the weight matrices in these LSTM
units, where white color represents zero weight groups and
black denotes nonzero weight groups. Note that white color
only appears when all the elements in a weight group are
0. Fig. 3(a) shows the matrices trained with λ = 0.35 and
group-8. Although the learned structures are not exactly the
same among three weight matrices, they are all very sparse.
In fact, the difference among the matrices indicates that no
single sparse structure is chosen. Instead, the learning process
makes it converge to an optimal configuration across all the
matrices.

Both Table 1 and Fig. 3(b) show similar results for ESS
with weight groups of 16 elements. The sparsity obtained
by group-16, however, is slightly lower than that by group-
8, under the same constraint λ. This is simply because it is
harder to force all the elements in a larger group to be zero.

Finally, we’d like to point out that we did not observe any
increase in decoding time due to acoustic modeling error.

5. CONCLUSION

In this work, we proposed an efficient structural sparsity
(ESS) learning method for acoustic modeling in speech
recognition. ESS, based on group Lasso regularization,
forces the networks to learn sparse structures while main-
taining accuracy. We showed that our method can generate
structural sparse models that speedup computation better than
non-structural sparse models. We applied our method to an
HMM+LSTM architecture model and obtained a model with
high sparsity and little WER increase.

Acknowledgements. This work is supported by the Na-
tional Science Foundation CCF-1744082.

2720

6. REFERENCES

[1] H. Sak, A. Senior, and F. Beaufays, “Long short-
term memorry based on recurrent neural network ar-
rchitectures for large vocabulary speech recognition,”
arXiv:1402.1128, 2014.

[2] A. Graves, A. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in Proceed-
ings of ICASSP, 2013.

[3] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech
recognition with deep bidirectional LSTM,” in ASRU,
2013, pp. 273–278.

[4] H. Sak, A. Senior, and F. Beaufays, “Long short-term
memory recurrent neural network architectures for large
scale acoustic modeling,” in Proc. Interspeech, 2014.

[5] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,”
in Advances in Neural Information Processing Systems,
2015.

[6] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pen-
sky, “Sparse convolutional neural networks,” in
The IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[7] W. Wen, C. Wu, Y. W, Y. Chen, and H. Li, “Learn-
ing structured sparsity in deep neural networks,” in Ad-
vances in Neural Information Processing Systems, 2016.

[8] S. Narang, G. Diamos, S. Sengupta, and E. Elsen,
“Exploring sparsity in recurrent neural networks,”
arXiv:1704.05119, 2017.

[9] W. Wen, Y. He, S. Rajbhandari, W. Wang, F. Liu, B. Hu,
Y. Chen, and H. Li, “Learning intrinsic sparse structures
within long short-term memory,” arXiv:1709.05027,
2017.

[10] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, M. Petr, Y. Qian,
P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely,
“The Kaldi speech recognition toolkit,” in Proceedings
ASRU, 2011, pp. 1–4.

[11] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing
the TED-LIUM corpus with selected data for language
modeling and more ted talks,” in LREC, 2014, pp. 3935–
3939.

[12] M. Deisher and A. Polonski, “Implementa-
tion of efficient, low power deep neural net-
works on next-generation intel client platforms,”
http://sigport.org/1777, 2017.

[13] G. Stemmer, M. Georges, J. Hofer, P. Rozen, J. Bauer,
J. Nowicki, T. Bocklet, H. R. Colett, O. Falik,
M. Deisher, and S. J. Downing, “Speech recognition and
understanding on hardware-accelerated DSP,” in Proc.
Interspeech, 2017, pp. 2036–2037.

2721

		2019-03-18T10:57:42-0500
	Preflight Ticket Signature

