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ABSTRACT

A novel approach for gesture recognition on mobile hand-
sets which does not require any additional transducers is pre-
sented. The method is based on transmitting ultrasonic pulses
from the earpiece and the loudspeaker and receiving with two
microphones, usually located at the top and the bottom of
the handset. Signal to Noise Ratio estimates are computed
from the reflected signals on each microphone from which
statistical moments are extracted and used for training a Sup-
port Vector Machine classifier along with hyperparameter op-
timization. The accuracy achieved is 77.5% on a database of
400 observations using 5-fold cross-validation.

Index Terms— gesture recognition, classification, sup-
port vector machines, ultrasound, handsets

1. INTRODUCTION

The mobile market is ever increasing. The penetration rate of
unique mobile subscribers in 2017 was 66% of the total popu-
lation, 57% of which were smartphone users, and is predicted
to reach 71% in 2025 (5.9 billion users) according to [1]. The
huge potential of this market led researchers and companies to
develop sophisticated speech recognition solutions to offer an
alternative method for user-smartphone interaction. However,
little attention has been given into creating product solutions
of lower complexity that can enhance the user experience.

Gestures are a natural way of using smart mobile devices.
Commercially available solutions rely on computer vision [2–
4]. These techniques are prone to low light intensity near the
device and to the camera’s view range. This results in poor
quality of interaction which inevitably disheartens the users
from using their devices as seamlessly as they would like to.

Motivated by this, researchers focused on ultrasound
based gesture recognition that avoids the limitation of camera-
based methods. Algorithms based on the Doppler Effect (DE)
have emerged as the standard approach [5–7]. DE is a
well-known phenomenon which characterises the frequency
change of a wave for an observer who is moving relative to
the wave source [8]. In [5] the researchers used the laptop’s
speakers and microphones to continuously transmit a tone
signal of 18-22 kHz and track the DE caused by hand move-
ments. The target’s speed, direction, proximity, size and the
variation of these over time were used as features to detect

gestures like single tap and scrolling by setting threshold val-
ues. The DE is also utilized in [6] where a single microphone
and the loudspeaker of a smartphone which transmits a con-
tinuous 21 kHz tone, are used. The sequence of frequency
shifts obtained from the time frames, after performing a
4096-point Fast Fourier Transform, are used for classifica-
tion. In [9] the authors aimed at detecting gestures performed
inside a triangular space formed by three receivers and a
transmitter emitting a 40 kHz tone signal and placed in the
centre. By using 60 features derived from principal compo-
nent analysis applied on cepstral coefficients and a Bayesian
classifier, they report a recognition accuracy of 88.42% on
a set of eight gestures. In [7], tone signals (>20 kHz) are
continuously transmitted from external speakers attached on
a mobile device. Duration and speed related features are ex-
tracted based on the DE and distance based features from the
estimated impulse response. An average recognition accuracy
of 92.6% for eight gestures obtained with a decision tree was
reported. A sensor was developed in [10], specifically for
gesture detection and recognition. However, it uses minia-
ture radar technology and is therefore not compared with our
work. Other researchers focused on multi-device interaction
techniques [11, 12] which is outside the scope of this work.

Many of these approaches require customized hard-
ware [9, 13, 14] or have high computational complexity and
cost [5, 15]. These reasons make an algorithm impractical
and prohibitive for real-time use on mobile handsets as it can
drain the battery life quickly. Therefore, there is a need for
low power, robust and accurate gesture recognition technique.

The work presented in this paper focuses on the formu-
lation of a gesture recognition algorithm that would satisfy
these requirements. It has an extremely low complexity as all
the processing is done in the time domain. It is also robust due
to averaging on the received block to compute the Signal to
Noise Ratio (SNR) and to the use of statistics instead of mak-
ing a decision on a per signal block basis. The algorithm uses
only the built-in handset’s speakers and microphones and the
aim is to detect the changes in the echo signal that will deter-
mine the gesture made. The interest in this work is to identify
the following gestures: (a) top to bottom (TB), (b) bottom to
top (BT), (c) right to left (RL) and (d) left to right (LR) with
the hand passing over the phone. These were chosen as they
are intuitive to the user and can be mapped to anything from
scrolling and swiping to answering and declining calls.
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Parameter Values
fs 48 kHz
N 256 samples
fe 21 kHz
fl 22.8 kHz

Table 1. Algorithm parameters with values used.

Fig. 1. Block diagram of the proposed algorithm with the table of parameter values.

2. ALGORITHM

The proposed method operates at a sampling frequency fs of
48 kHz and is based on extracting a set of features from the
reflections of the transmitted ultrasonic pulses. These pulses
are transmitted through the earpiece and the loudspeaker. If
a target is present, the echo signal is captured by two micro-
phones usually located at the top and the bottom of the hand-
set. Fig. 1 shows the block diagram of the proposed algo-
rithm where only one transmitter and receiver are shown for
simplicity. Let

se(n) = sin(2πfen)w(n) (1)
sl(n) = sin(2πfln)w(n) (2)

denote the transmitted pulses from the earpiece and loud-
speaker respectively, where fe and fl are the pulse frequen-
cies with fe 6= fl, N is the pulse length, n = 1, 2, . . . , N
and w(n) is a symmetric Nuttall defined minimum 4-term
Blackman-Harris window as in [16]. These signals are trans-
mitted every 8N samples in order to allow enough time to
receive and process the echo before the next one and to reduce
power consumption. On the receiver end, the kth received sig-
nal block is denoted as rkt (n) and rkb (n) where the subscripts
t and b refer to top and bottom microphone respectively.
These are then processed as

r̂kt (n) =

M/2−1∑
m=−M/2

rkt (m)se(n−m)− r̂k−1
t (n) (3)

r̂kb (n) =

M/2−1∑
m=−M/2

rkb (m)sl(n−m)− r̂k−1
b (n) (4)

where M = 3N in which the delay due to the convolution
operation is taken into account. The subtraction of the pre-
viously processed block is done in order to remove the direct
path signal, transmitted through the phone frame, which is
uninformative with respect to the gesture and is assumed to
be constant between successive blocks.

The performance for frequencies greater than 20 kHz is
not guaranteed given that the smartphone’s microphones and
speakers are designed for speech and audio and that the higher
fe and fl are, the greater the attenuation due to the propaga-
tion through air is [17]. Therefore, each microphone signal is
filtered with the time reversed coefficients (matched filter) of
the pulse transmitted from the closest speaker, aiming at fil-
tering out the spectral content that is outside the frequencies
of interest.

2.1. Feature extraction

The processed signal blocks r̂kt (n) and r̂kb (n) are then used to
obtain two SNR estimates, one for each microphone, as the ra-
tio of 1

e2−e1+1

∑e2
m=e1

(e(m))2 to 1
ν2−ν1+1

∑ν2
m=ν1

(ν(m))2

where e(m) and ν(m) are the echo (green) and noise (red)
regions respectively in Fig. 2 and e1, e2, ν1, ν2 are the indices
denoting the start and end samples of the regions. e(m) is
the region where user activity is expected and is constrained
to the first 24% of r̂k, after compensating for the filter delay.
This gives a detection range of 44 cm (sound speed in air is
343 m/s) whereas ν(m) is constrained in the last 25%.

Considering the series of such SNR estimates withZ sam-
ples in total per microphone, we can think of it as a proba-
bility density function P as shown in Fig. 3. Its shape is
of interest and by defining gµ0

m =
[
(1/Z − µ0)m, (2/Z −

µ0)m, . . . , (Z/Z −µ0)m
]

as the vector giving the position of
an element in the series, the first four statistical moments are
computed as

µ = g01P
T , σ2 = gµ2P

T , s =
gµ3P

T

σ3
, κ =

gµ4P
T

σ4
(5)

where P is normalized such that
∑Z−1
z=1 Pz = 1. By defining

gµ0
m in this way, it ensures that the duration of the gesture does

not affect the values of (5) as its maximum value is limited
to 1. Moreover, the set of moments captures the temporal in-
formation which can be important for classification as can be
seen in Fig. 3 where the SNR estimates from the bottom mi-
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Fig. 2. Example of (a) rkt (n) and (b) r̂kt (n) with the echo and
noise regions where N = 256 and block size is 512.

0 5 10 15 20 25
Received block

0

50

100

150

200

250

SN
R

Top mic
Bottom mic

Fig. 3. SNR estimates for a bottom to top gesture.

crophone have higher values at the first few received blocks
where the hand is closer to that microphone. For a single
gesture, the feature vector is obtained as an 8-dimensional
vector xi = [µt, σ

2
t , st, κt, µb, σ

2
b , sb, κb] with the subscripts

denoting the microphone location and i = 1, 2, . . . , c the ges-
ture class number. The feature set is then constructed as
X = [xi1,x

i
2, . . . ,x

i
L]T for L recordings.

2.2. Classification

Assuming the use of a gesture detection algorithm, xi can
be used to identify the gesture class. This is obtained by the
decision boundaries formed by the Support Vector Machine
(SVM) approach [18]. For classes i, j with Q and Q number
of observations respectively, the SVM in its dual form is given
by [19]

min
α

1

2
αTBα− eTα subject to: yTα = 0 (6)

with 0 ≤ αp ≤ C ∀p, Bqq = yiqy
j
qK(xiq,x

j
q), K(·, ·) is a

kernel, e = [1, 1, . . . , 1]T , q = 1, 2, . . . , Q, q = 1, 2, . . . ,Q,
p = 1, 2, . . . , P with P = Q + Q, xiq and xjq are the
training vectors obtained from X with corresponding labels
yiq and yjq. In this work, a one vs one approach was fol-
lowed in which c(c − 1)/2 classifiers are constructed where
each one is trained with data from two classes [20]. For
classification, a majority vote strategy was used based on
sign(

∑P
p=1 y

i,j
p αpK(x,xi,jp ) + bi,j) where b is the hyper-

plane intercept point. In this formulation only the xi,jp of
αp > 0 are used which are the support vectors essentially.
For K(·, ·), four different functions are considered [21]:

• Linear (K1): K(xq,xq) = 〈xq,xq〉 (7)
• Polynomial (K2): K(xq,xq) = (γ〈xq,xq〉)d (8)
• Sigmoid (K3): K(xq,xq) = tanh(γ〈xq,xq〉) (9)

• Gaussian Radial basis function (RBF) (K4):

K(xq,xq) = exp(−γ ‖〈xq,xq〉‖2) (10)

where 〈·, ·〉 denotes the inner product of the two vectors. To
this date, there is no scientifically proven optimization tech-
nique for finding the best kernel as it is depends on the data
and the application. In this paper, a practical approach was
followed in choosing the most suitable kernel along with the
best values for the set of hyperparameters Λ = {C, γ, d}.
This is described in Section 3.2.

We are interested in recognizing 4 gestures and a detec-
tion algorithm is therefore assumed to be used. However, this
algorithm might not be perfect and in order to increase the ro-
bustness of the classifier in the proposed approach and make it
less prone to false positives, a fifth class is also considered and
is defined as the background noise recordings in the database.

3. EVALUATION

3.1. Experimental setup

For SVM model training and the algorithm evaluation, 360
gestures performed by 9 users, and 40 noise observations
were used. Sound data was captured using a Samsung Galaxy
S6 handset and the following procedure: The user places
the handset flat on the table and then performs an instance
of one of the 4 gestures stated in Section 1 with one hand
while with the other starts and stops the data recording on the
laptop. In this way the transition between the active state (i.e.
gesture) and idle state, and vice versa, is avoided, which can
be subjective and could lead to ambiguous decisions. More
recordings are then carried out in the same manner for each
of the four types and a total of 90 observations (22.5% of the
database) for each gesture type are obtained. The gestures
were recorded in a quiet room and the background noise of
the same room as well as that of a noisy office were also
obtained. The algorithm parameter values used are indicated
in the table of Fig. 1.
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3.2. Methods

Given that the task is multi-class classification, the algo-
rithm’s performance is evaluated based on the average of
the F1 scores of each class weighted by the number of true
instances per class and is denoted as F1. Cross validation
testing using 5 folds in conjunction with grid search for hy-
perparameter optimization were conducted. During cross
validation the features of the training folds were standardized
by subtracting the mean and scaling to unit variance. The
same scale values are applied to the test fold. Table 1 shows
the hyperparameters and the range of values tested. For the
linear kernel the only relevant parameter is C while d is only
used with the polynomial kernel.

Parameter Values
K(·, ·) K1,K2,K3,K4

C [1, 2, . . . , 20, 30, 40, . . . , 100, 1000]
γ [5, 2, 0.125, 10n] for n = 1, 0, . . . ,−6
d [2, 3, 4, 5]

Table 1. SVM hyperparameters to be optimized.

3.3. Results

Table 2 summarises the best results obtained per kernel. The
models are ranked based on the average cross validation F1

score and the rank column gives their overall rank compared
to all the trained models. The SVM with RBF kernel, C = 70
and γ = 0.01, achieved the highest average F1 equal to 0.771
(with an equivalent average accuracy of 77.5%). Fig. 4 shows
the confusion matrix obtained with this model. The most
common error is the LR class which gives a class accuracy
of 48.9%. On the contrary, for the BT and noise classes the
accuracy is 90% while for the remaining two it is at least 80%.

The number of support vectors is related to the general-
ization performance of the classifier. The smaller the number
the better the generalization is expected to be [22]. This could
explain the lower accuracy achieved for the LR class as the
support vectors found per class are TB: 19, BT: 29, RL: 28
and LR: 73. However, there also might exist some overlap in
the feature space between the LR and RL classes. The results
nevertheless, suggest that the proposed features carry signif-
icant discriminatory information and the trained model will
generalize with high accuracy on unseen data.

The proposed method is compared against the one de-
scribed in [5] which is one of the most cited ultrasound based

K(·, ·) C γ d mean F1 std F1 Accuracy rank
K1 17 - - 0.744 0.070 75.3% 50
K2 40 0.10 3 0.735 0.049 73.8% 89
K3 70 0.01 - 0.747 0.069 75.5% 45
K4 70 0.01 - 0.771 0.084 77.5% 1

Table 2. Best average cross-validation training results for
each kernel. The last column gives the rank of each model
compared to all the trained models.

85.6%
77

0.0%
0

12.2%
11

0.0%
0

2.2%
2

1.1%
1

90.0%
81

2.2%
2

3.3%
3

3.3%
3

5.6%
5

1.1%
1

80.0%
72

10.0%
9

3.3%
3

5.6%
5

6.7%
6

31.1%
28

48.9%
44

7.8%
7

2.5%
1

0.0%
0

5.0%
2

2.5%
1

90.0%
36

TB BT RL LR Noise
Target Class

TB

BT

RL

LR

Noise

O
ut

pu
t C

la
ss

Fig. 4. Confusion matrix obtained with 5-fold cross validation
and using the RBF kernel SVM with C = 70 and γ = 0.01.

gesture recognition methods. In this approach, fixed thresh-
olds for detecting and recognizing gestures are used but here
we find more general thresholds given the features by using
SVM. The setup and methods described in Sections 3.1 and
3.2 are used and a linear SVM with C parameter optimization
using the features from the baseline method is trained. The
features in [5] are per signal block k and therefore, to make
a fair comparison to the results of the proposed method we
assume that each block has the same label as the gesture it be-
longs to and then train and test the classifier per block. A per
gesture accuracy is obtained by performing majority voting
on each gesture’s predicted block class. The results obtained
indicate poor discriminatory power of these per signal block
features for 3 out of the 5 classes as most of the gestures are
classified as noise. In summary, comparing with the best re-
sults of Table 2, the baseline accuracy is 31.5% vs 77.5% and
F1 is 0.206 vs 0.771. The performance of the baseline is af-
fected by the low amplitude of the transmitted pulses which
further supports the robustness of our proposed set of features.

4. CONCLUSIONS

This paper presented a novel approach for performing ultra-
sonic gesture recognition for handsets. The method is of low
computational complexity and is based on transmitting ultra-
sonic pulses from the earpiece and loudspeaker and receiving
the reflected signals with two microphones. SNR estimates
are computed from the reflected signals on each microphone
from which statistical moments are extracted and are later
used to train an SVM classifier along with hyperparameter op-
timization. The accuracy achieved is 77.5% on a database of
400 observations. The proposed approach is robust to speaker
gain changes as it models the shape of the series of SNR esti-
mates rather than their absolute value.
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