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ABSTRACT
As information security is increasingly valued, privacy-
preserving data mining has become a research hotspot in
the field of big data and signal processing. We propose a new
differentially private greedy decision forest algorithm called
DPGDF to help improve the accuracy of privacy-preserving
data mining. Unlike previous algorithms that only employed
greedy decision trees or random forests, our algorithm us-
es a combination of greedy trees and parallel combination
theory to construct a greedy decision forest and coordinate
privacy protection and prediction accuracy to achieve the best
balance. Combined with smooth sensitivity, the introduction
of noise is minimized, making the prediction accuracy of
the algorithm notably better than the current state-of-the-art
algorithms. Experiments on the UCI datasets show that the
prediction accuracy of our algorithm is about 10% higher
than that of those algorithms.

Index Terms— information security, differential privacy,
data mining, decision forest

1. INTRODUCTION

In the age of big data, knowledge discovery is rapidly driv-
en by machine learning and data mining. The analysis and
mining of collected personal data, with the help of strong
computing power, can find a lot of valuable information.
However, information security is also threatened, and privacy-
preserving data mining shows greatly important significance.

In general, k-anonymity [1] and l-diversity [2] are com-
mon privacy protection technologies for data distribution. But
their protection capabilities can not meet the general needs.
The emergence of differential privacy [3] provides a new di-
rection for privacy protection data mining. It does not require
any assumptions about the attacker’s background knowledge.
And it only relies on the parameter called privacy budget to
control the probability of privacy leakage. Decision tree [4]
is one of the most popular data mining algorithms of clas-
sification, whose model is interpretable and fast. Our work
focuses on decision tree data mining issues that satisfy differ-
ential privacy. Currently, there are a variety of decision tree
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data mining methods based on differential privacy. For a sin-
gle decision tree, Friedman and Schuster proposed a differen-
tially private ID3 decision tree induction algorithm based on
the SuLQ framework [5] in [6]. In 2015, Fletcher and Islam
[7] proposed a differentially private decision forest algorith-
m which takes advantage of the local sensitivity [8] and the
Exponential Mechanism [9]. It’s worth mentioning that all
these works [6, 7] introduced a large amount of noise, which
impaired their performance of prediction accuracy.

Considering a bunch of decision trees, Jagannathan et al.
[10] raised a different approach which utilizes random deci-
sion trees [11]. Their algorithm satisfies differential privacy
by using the Laplace Mechanism [12] at the leaf. Fletcher and
Islam adopt smooth sensitivity [8] to reduce the noise at the
leaf in [13], increasing accuracy to some extent. Focusing on
binary classification problem, Rana et al. proposed a novel d-
ifferentially private decision tree induction algorithm in [14].
They used a weaker form of differential privacy, and proved
that a large ensemble of trees can get higher utility. However,
because their random tree fails to make full use of the infor-
mation contained in the data, the accuracy of their algorithm
prediction is also undesirable.

In this paper, we propose the differentially private greedy
decision forest (DPGDF), an algorithm based on parallel
combination theory [15] to solve privacy-preserving data
mining. By using disjoint subsets of the data to build greedy
decision trees, we can apply the whole privacy budget on
each tree. Maximizing the use of dataset and privacy budget
allows our algorithms to perform well in any privacy budget.
We conduct experiments on real-world datasets to evaluate
the effectiveness of our algorithms. The experimental results
show that our DPGDF outperforms the current state-of-the-
art privacy-preserving data mining algorithms. In all the
five datasets tested, DPGDF is about 10% ahead of those
algorithms in terms of prediction accuracy.

The following definitions are the theoretical basis of our
algorithm.
Definition 1. (ε-Differential Privacy [3]) A randomized func-
tion M gives ε-differential privacy if for all datasets D1 and
D2 differing on a single record, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε)× Pr[M(D2) ∈ S] (1)
Definition 2. (Parallel Composition [15]) For disjoint sub-
sets xi ⊆ x , let query f(xi) satisfy ε-differential privacy;
then applying all queries f(xi) still satisfies ε-differential pri-
vacy.
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2. DIFFERENTIALLY PRIVATE GREEDY DECISION
FOREST

We describe our algorithm in this section, including the main
steps of the algorithm, the selection of important parameters,
and the distribution of privacy budget.

2.1. Algorithm summary

The basic idea of our algorithm can be summarized as the
following steps: First, we calculate the size of the forest τ
and the optimal depth d of each tree, and divide the dataset
into τ parts. Then we calculate the smooth sensitivity S of
the dataset used by each tree and create a greedy decision
tree accordingly. Repeat the previous step until we create the
whole forest, as Alg. 1 shows. Finally, query the leaf nodes
and output the majority class labels.

The complete algorithms are summarized in Alg. 1 and
Alg. 2, respectively.

2.2. Create a single decision tree

As shown in Alg. 2, when constructing the greedy decision
tree in our algorithm, we follow the conventional approach
[16]: our algorithm uses Gini index [17] to choose splitting
attributes. Firstly, we compute the Gini index of all attributes,
then pick out one attribute a from attribute set A as splitting
attribute by Exponential Mechanism. Then, we remove the
attribute a from the attribute set A. The remaining layers are
processed in the same way until the leaf nodes. When the
algorithm gets the leaf node, it returns majority label by Ex-
ponential Mechanism with smooth sensitivity.

Algorithm 1 Differentially Private Greedy Decision Forest

Input: tree max depth : d, tree number : τ, data : D,
private budget : ε, set of attributes : A,
class label : C

Output: decision forest classification : F
1: function DPGDF(D,A,C, d, τ, ε)
2: Data← Divide(D, τ)
3: for t = 1, ..., τ do
4: depth← 0
5: S ← sensitvity(Data[t])
6: T ← Build Tree(Data[t], A, depth, d, ε, T, S)
7: F ← F ∪ T
8: return F

2.3. Parameter selection

Building a greedy decision tree usually requires using all m
attributes, but it is not necessary while building multiple trees.
We empirically find there is an optimal depth range fromm/2
to m where prediction accuracy is highest for most dataset-
s. Intuitively, we could improve accuracy by increasing the
number of trees while ensuring the same privacy. However,
the experimental results negated this idea. Although privacy

Algorithm 2 Build Tree

Input: data : D, set of attributes : A,max depth : d
current depth : depth, privacy budget : ε, T ree
: T, sensitivity : S

Output: decision tree : T
1: if depth < d and len(D) > 10 then
2: if T = None then
3: T ← Tree(D), create root node with D

4: subset← divide(D,C), divide data according
to class label

5: if len(subset) ≤ 1 then
6: T arrives at leaf node and

label← majority(Exp Mechanism(C, S, ε2 ))

7: for a in A do
8: gini← calculate Gini index of a
9: T.attr ← Exp Mechanism(gini, ε

2×(d−1) )

select splitting attribute

10: subD ← divide(D,T.attr), divide data based
on T.attr

11: A← A− T.attr remove attribute that has
been used

12: for key in subD.keys() do
13: Build Tree(subD[key], A, depth, d, ε, T, S)

create child tree based on T.attr
14: return T
15: else
16: T arrives at leaf node and

label← majority(Exp Mechanism(C, S, ε2 ))
17: return T

budget ε won’t be divided by each individual in the forest, the
accuracy of the algorithm will decline by the fact that each
tree contains too few records. Because lager numbers of trees
cause more leaf nodes to output a label that differs from the
actual most frequent label. In other words, the most frequent
label will become no longer the most frequent. They will be
diluted by the large number of trees. In general, the number
of records per tree is determined by the actual dataset. The
number of attributes and the number of candidate values of
the attribute will affect the size of the forest. Through experi-
ments, we found that when the tree depth is not more than 10
and the privacy budget is 0.1, each tree can be allocated 400
records to train the classifier to obtain a fairly high accuracy.
As the depth increases, more records will be required. And,
we use a table (Table 1) to illustrate the relationship between
depth and required records when privacy budget is 0.1. An-
other fact is that when the privacy budget is small, the smaller
the forest size, the higher the accuracy of the classifier.

2.4. Distribution of privacy budget

Here we introduce how to allocate privacy budget. Although
adopting parallel composition theory allows each tree has an
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Table 1

Depth 1-10 10-20 20-30
Record Number 400 400-1000 1000-3000

entire privacy budget, all layers of one tree are composite.
Every layer will cost privacy budget alone. The leaf node is
the most important layer in a tree, because it decides which
is the majority label. We allocate a half of privacy budget
to the leaf node. As for the remaining layers, they evenly
allocate the remaining half of the budget. When we calculate
the majority label, we adopt smooth sensitivity [13] in the
Exponential Mechanism.

2.5. Theoretical analysis

After building a greedy forest, our algorithm outputs the en-
tire forest, including the splitting attributes of the internal n-
odes of each tree and the labels of the leaf nodes. Here we
show that the algorithm satisfies ε-differential privacy in The-
orem 1.

Theorem 1. Differentially Private Greedy Decision Forest
satisfies ε-differential privacy.

Proof. First, we consider a single tree. A privacy budget
ε

2×(d−1) is used for each attribute selection. Each tree has
a maximum of (d−1) attribute selections. For each layer, the
way it satisfies ε

2×(d−1) -differential privacy is to choose the
splitting attribute with probability

Pr(a) ∝ exp( −ε×Gini(a,A)

2(d− 1)×∆(Gini)
) (2)

All attribute selections follow the composition theory [9], so
all (d-1) internal layers satisfy α-differential privacy. Where

α =

d−1∑
i=1

εi = (d− 1)× ε

2× (d− 1)
=
ε

2
(3)

The other half of the privacy budget is spent on leaf nodes.
Following the composition theory with the label selection of
leaf nodes, the whole tree is ε-differential privacy. Because
each tree is built with a dataset that is not adjacent, the dataset
of the whole forest used D satisfies

D =

τ⋃
i=1

Di (4)

all the trees follow the theory of parallel composition, thus,
the algorithm satisfies ε-differential privacy.

3. EXPERIMENTS

We present the experimental results and analysis of dataset-
s from the UCI Machine Learning Repository [18]. We

compare the classification accuracy of our algorithm with
Smooth Random Trees (SRT) [13] and Random Decision
Trees (RDT) [10] which are currently the state-of-the-art al-
gorithms. According to a comparison of the main properties
of the differentially-private decision tree algorithms in [19],
the accuracy of the existing multi-class greedy decision tree
algorithm is relatively low, and thus it is not listed here. Of
course, we have a base-line that is the accuracy of our algo-
rithm without privacy. All reported prediction accuracy of all
algorithms are average results of performing 100 times repe-
tition. Without loss of generality, every time we shuffled the
data. And we also compared the accuracy of all algorithms
at different privacy budget, ε = 0.1, 0.2, 0.3, 0.4, 0.5, 1. We
repeated experiments of SRT and RDT on different datasets
using recommend parameter.

The datasets we used are all public and have the follow-
ing names in the UCI Machine Learning Repository [18] :
“Car Evaluation” (Fig. 1), “Mushroom” (Fig. 2), “Nursery”
(Fig. 3), “Chess” (Fig. 4), “balance” (Fig. 5). After remov-
ing records with missing values, the datasets are divided into
training and testing sets in a ratio of eight to two. The number
of records in each dataset ranges from 625 to 12960; the num-
ber of attribute ranges from 4 to 36; and the number of class
ranges from 2 to 5. Moreover, we have also tested the algo-
rithm on other datasets. The results show that our algorithm
still has obvious advantages.
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Figure 1 : Car Evaluation
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Figure 2 : Mushroom
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As can be seen from the comparison chart, our algorithm
is always better than the other two regardless of the privacy
budget. It can get high prediction accuracy at low privacy
budgets early. Fig. 1 shows the results of three algorithms
with “Car Evaluation” dataset under different privacy budget.
The dataset has about 1700 records, and each record includes
six attributes and one label. Obviously, when our algorithm
has a privacy budget of 0.1, the prediction accuracy is far a-
head of the other two algorithms. Although the accuracy of
their prediction has increased with the increase of the bud-
get, our algorithm accuracy has always been close to nearly
10 percentage points. A strange phenomenon is that as the
privacy budget increases, the optimal accuracy of “Car Eval-
uation” decreases. In common sense, the larger the privacy
budget, the more accurate the results should be. However,
this gives us an unexpected result. In the case of ensuring that
the algorithm and parameters are correct, we try to find the
cause of this phenomenon. One plausible explanation is that
differential privacy can help the algorithm prevent or reduce
overfitting [20]. Excessive privacy budgets result in reduced
ability to suppress overfitting.

Fig. 2 shows the results of three algorithms with “Mush-
room” dataset. Our algorithms maintain near-perfect accura-
cy rates under any size privacy budget. The prediction accu-
racy of the RDT algorithm is always less than 90%. The SMT
algorithm only in the privacy budget of up to 1, the prediction
accuracy rate barely close to our algorithm. Fig. 3 is “nurs-
ery” dataset. When the privacy budget is greater than 0.1, our
algorithm accuracy begins to be far ahead of the other two
algorithms. When the budget reaches 0.4, its accuracy is al-
most the same as the no-privacy algorithm. Fig. 4 shows the
results of three algorithms with “Chess” dataset. Unlike the
car dataset, which has only six attributions, the dataset has 36
attributions. In the face of such a complex data set, our al-
gorithms still have an absolute lead in accuracy. And we find
that random approach is difficult to achieve the same accuracy
of greedy approach when the privacy budget is high enough.
Because random methods do not use all attributes to build a
tree, they use only hal f the number of attributes to build a
decision tree. In this case, the algorithm will not be able to
take full advantage of the information contained in the dataset
to make the prediction a good result.

In the experiment, we found an interesting phenomenon:
the number of trees is probably proportional to the privacy
budget. After repeated experiments, we found that the num-
ber of trees is almost linear with the privacy budget. We tested
multiple datasets and found that the law is basically estab-
lished, especially when the privacy budget is small.

4. CONCLUSION

The DPGDF algorithm proposed in this paper is used for
privacy-preserving data mining, which protects private sensi-
tive information in data while maintaining data availability.
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Figure 3 : Nursery
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Figure 4 : Chess
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Figure 5 : Banlace

According to the characteristics of the decision tree algorith-
m, while protecting privacy, the parallel composition theory
and decision forest are used to improve the accuracy. The ex-
perimental results show that our algorithm has good perfor-
mance even when the privacy budget is low. Its overall per-
formance is superior to the current state-of-the-art algorithms.
Future work directions include improving the accuracy of the
algorithm and extending the evaluation of the proposed algo-
rithm.
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