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ABSTRACT
Pixel-value-ordering (PVO) appears as an efficient solution
for high-fidelity reversible data hiding. State-of-the-art PVO
schemes split the host image into blocks, sort pixels within
the blocks based on their graylevel and, finally, embed data
into some differences between the sorted values. This paper
investigates the use of the prediction error instead of the pixel
graylevel both for ordering and embedding. The proposed
prediction-error-ordering (PEO) scheme also introduces a
two-stage procedure by splitting each block in two sets fol-
lowing a chessboard pattern and by processing set by set each
block. The pixels of one set are used to classify and predict
the ones of the other set and vice-versa. The proposed PEO
approach outperforms the state-of-the-art PVO schemes.

Index Terms— Reversible data hiding, pixel-value-
ordering, pairwise embedding

1. INTRODUCTION

Reversible data hiding (RDH) deals with data embedding into
digital hosts, with the major constraint that both the embed-
ded data and the hosts should be exactly recovered [1]. High-
fidelity RDH limits the distortion of the host to maximum one
graylevel per pixel.

By a proper selection of the embedding parameters, high-
fidelity RDH can be obtained with the classical histogram
shifting (HS) or the prediction-error expansion (PEE) ap-
proaches. HS makes room for embedding data into a selected
bin of a feature histogram (graylevel [2], or prediction error
[3], etc.) by shifting with one position the bins situated to
the left or the right of the selected bin. A hidden data bit is
embedded into each pixel with the selected feature value by
keeping it unchanged for ”0” and by changing the value with
one graylevel in the chosen direction for ”1”. For a single
embedding level, the distortion introduced by HS cannot ex-
ceed one graylevel. PEE embeds data into the pixels with
prediction errors in a predefined interval around zero, (usu-
ally [−T, T ), see [4, 5, 6]). The LSB of the prediction error is
cleared by two times expansion, making room for hiding one
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data bit. The pixels with prediction errors outside the selected
interval are shifted by ±T positions. High-fidelity RDH is
provided by embedding into the pixels with prediction errors
in [−1, 0).

For high fidelity RDH, both HS and PEE are outper-
formed by the more recent approaches based on pairwise
embedding and pixel value ordering (PVO). The pairwise
RDH framework of [7] processes the host pixels as pairs. A
prediction error (or difference) pair is computed for each pixel
pair. Specific embedding equations derived from HS are used
to embed data in a more efficient manner. More precisely, in-
stead of embedding two bits of data, i.e. the combinations of
bits ”00”, ”01”, ”10” and ”11”, the last combination is elim-
inated, maintaining the embedding distortion within the ±1
limit. The pairs in [7] are formed by grouping pixel around
the diagonal direction. A pairing algorithm that adaptively
selects the pairs based on the corresponding prediction errors
was proposed in [8].

The PVO based RDH framework introduced in [9] splits
the host image into equally sized blocks. The pixels in each
block are sorted based on their graylevel value. The first and
last pixel in the sorted order serve as potential hosts for the
hidden data. A difference value is computed based on a ref-
erence pixel for each potential host. A hidden data bit is
inserted into a pixel if its corresponding difference value is
1, otherwise its value is shifted outwards by one graylevel.
The IPVO approach of [10] improves the difference compu-
tation process. PVO was also introduced as a predictor for
HS in [11] and PEE in [12]. In [13] PVO was combined with
pairwise embedding, an approach that was further refined in
[14]. A new PVO approach with variable block sizes based
on quadtree partitions was also recently proposed in [15].

The PVO approaches proposed so far sort pixels within
blocks based on their graylevel. Furthermore, graylevel dif-
ferences between the extrema pixels and their references are
used to select the candidates for embedding. This paper pro-
poses the use of prediction error instead of pixel graylevel
both for ordering and embedding. Since prediction error is
Laplacian distributed, the newly proposed prediction-error or-
dering (PEO) approach is expected to provide more candi-
dates for data embedding. Another original aspect of the pro-
posed PEO is the splitting of each block into cross and dot
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sets, as in [4], and a two-stage block processing scheme. The
two-stage processing ensures the reversible computation of
the prediction error.

The outline of the paper is as follows. The pairwise IPVO
scheme of [14] is discussed in Section 2. The proposed PEO
approach is introduced in Section 3. The experimental results
are presented in Section 4 and the conclusions are drawn in
Section 5.

2. PAIRWISE IPVO

The pairwise IPVO scheme introduced in [14] improves the
RDH framework of [13]. The host image is first split into dis-
joint, equally sized blocks. The complexity of each block is
evaluated based on a local complexity value, lc. Two thresh-
olds, t1 and t2, are then used to separate the blocks into three
groups: smooth (lc ≤ t1), slightly noisy (t1 < lc ≤ t2) and
noisy (lc > t2).

The smooth and slightly noisy blocks are processed one
by one in raster scan order (from left to right and top to bot-
tom). Let blocks have n pixels. The pixels in each block
are sorted in ascending order based on their graylevel value:
xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n). For xσ(i), the pixel with the ith

largest graylevel in the block, σ(i) represents its correspond-
ing position in the non-sorted block. Noisy blocks are not
used for data hiding and are skipped by the embedding algo-
rithm.

Before going any further, it is important to mention that
the sorting order is only used to identify and process the host
pixels. The embedding algorithm does not change the posi-
tion of pixels in the image.

2.1. Embedding in slightly noisy blocks

Two pixels from each slightly noisy block are selected as po-
tential hosts for the hidden data: xσ(1) and xσ(n). Two other
pixels, xσ(2) and xσ(n−1), are selected as reference values for
the host pixels. Their positions in the non-sorted block are
evaluated:

u1 = min(σ(1), σ(2)) u2 = min(σ(n− 1), σ(n))
v1 = max(σ(1), σ(2)) v2 = max(σ(n− 1), σ(n))

(1)

The differences between the selected host pixels and their
closest reference values are computed as:

dl = xu1
− xv1 dr = xu2

− xv2 (2)

Note that dl is either xσ(1)−xσ(2) or xσ(2)−xσ(1) (controlled
by (1)).

xσ(1) and xσ(n) are further used as hosts if their corre-
sponding difference values are either {0} or {1}, otherwise
they are shifted outwards by one graylevel:

x′σ(1) =

{
xσ(1) − w if dl ∈ {0, 1}
xσ(1) − 1 if dl < 0 or dl > 1

(3)

x′σ(n) =

{
xσ(n) + w if dr ∈ {0, 1}
xσ(n) + 1 if dr < 0 or dr > 1

(4)

where w ∈ {0, 1} is the hidden data bit.

2.2. Embedding in smooth blocks

Four pixels from each smooth block are selected as potential
hosts: xσ(1), xσ(2), xσ(n−1) and xσ(n). Their positions in the
non-sorted block are evaluated with (1).

The xσ(3) and xσ(n−2) pixels are selected as references.
Their positions are also evaluated with respect to the host
pixel positions:

u11 = min(u1, σ(3)) u21 = min(u2, σ(n− 2))
v11 = max(u1, σ(3)) v22 = max(u2, σ(n− 2))
u12 = min(v1, σ(3)) u22 = min(v2, σ(n− 2))
v12 = max(v1, σ(3)) v22 = max(v2, σ(n− 2))

(5)

Four difference values are then computed:

d11 = xu11 − xv11 d21 = xu21 − xv21
d12 = xu12 − xv12 d22 = xu22 − xv22

(6)

The pixels are processed as pairs, namely (xu1
, xv1) and

(xu2
, xv2). These pairs are classified into groups based on the

{0} and {1} selected differences:

(xui , xvi) ∈


A if di1 ∈ {0, 1} and di2 ∈ {0, 1}
B if di1 ∈ {−1, 2} and di2 ∈ {−1, 2}
C if di1 ∈ {0, 1} and di2 /∈ {0, 1}
D if di1 /∈ {0, 1} and di2 ∈ {0, 1}
E otherwise

(7)

with i ∈ {1, 2}.
Based on their group, the pairs are either embedded with

data or shifted:

(x′
ui
, x′

vi) =


(xui , xvi)− (w1, w2) if (xui , xvi) ∈ A
(xui , xvi)− (w,w) if (xui , xvi) ∈ B
(xui , xvi)− (w, 1) if (xui , xvi) ∈ C
(xui , xvi)− (1, w) if (xui , xvi) ∈ D
(xui , xvi)− (1, 1) if (xu1i, xvi) ∈ E

(8)
where (w1, w2) ∈ {(0, 0), (0, 1), (1, 0)} and w ∈ {0, 1}.

2.3. Embedding parameters and data extraction

The embedding parameters (t1, t2 and the size of the pixel
blocks) are stored in a reserved area of the image by LSB
substitution. The substituted LSBs are appended to the hid-
den data before the embedding stage. The optimal embedding
parameters for a given payload size can be determined by ex-
haustive search or by using a linear programing model (see
[14]). The overflow/underflow at embedding or shifting is
solved by using a location map: overflow/underflow pixels are
left unchanged and their locations are stored in the map. Af-
ter the embedding stage is concluded, the map is compressed
and stored in the reserved area.
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Fig. 1. The X× and Xo sets, the eight xi ∈ X× pixels of a
4× 4 block and the prediction context for x1.

At the decoding stage, the embedding parameters and the
overflow map are first extracted from the reserved area. The
local complexity for each block is computed and the blocks
are separated into the three groups. The original blocks are
restored by reverting the corresponding operations (either (3),
(4) or (8)). After the entire hidden content was extracted, the
original reserved area LSBs are removed from the extracted
bit-stream and are used to restore the reserved area.

3. THE PROPOSED PEO APPROACH

The host image is first divided into mb × nb pixel blocks,
where both mb and nb have even values. Similarly to [4], the
pixels are also split into two sets: X× and Xo (cross and dot),
forming a chessboard pattern (Fig. 1). A pixel belonging to
X× has to its left, right, top and bottom pixels belonging to
Xo and vice-versa.

The embedding of the data proceeds in two stages, cor-
responding to X× and Xo, respectively. Each stage provides
half of the required embedding capacity. Since both mb and
nb are even, the smallest block size for the proposed approach
is 4 × 4. For [13] and [14] this size is 2 × 3. The difference
between the minimum block sizes of our approach and the
ones of [13, 14] is attenuated by the splitting of the blocks
in two sets and the separate embedding of X× and Xo pixels
that doubles the possible host pixels per block.

The X× pixels are processed first. For each block, the
local complexity is evaluated using the pixels from the same
block that are part of Xo:

lc =
2

mbnb

mbnb/2∑
i=1

|xi − µc| , xi ∈ Xo (9)

where |a| =
{
a if a > 0
−a if a ≤ 0

and µc = 2
mbnb

∑mbnb/2
i=1 xi.

Based on their corresponding lc value, the blocks are clas-
sified into smooth, slightly noisy and noisy groups (as de-
scribed in the previous section).

Fig. 2. The six classic test images and the Kodak set.

The pixels of Xo are also used to predict the ones of X×.
Let x̂ be the predicted value of x, x̂ is computed using the
rhombus average of [4]:

x̂ =

⌊
c1 + c2 + c3 + c4

4
+

1

2

⌋
(10)

where c1, c2, c3, c4 is the prediction context of x (shown in
Fig. 1) and bac represents the greatest integer less than or
equal to a. The prediction error is then determined for each
x ∈ X× in the current block:

e = x− x̂ (11)

The X× pixels from smooth and slightly noisy blocks can
now be sorted based on their prediction errors. Let eσ(1) ≤
eσ(2) ≤ ... ≤ eσ(n) be the derived ordering.

For slightly noisy blocks, equation (1) is used to evaluate
the original pixel positions. The difference values used for
embedding are then computed as:

dl = eu1
− ev1 dr = eu2

− ev2 (12)

These difference values are then used in equations (3) and (4)
to insert hidden bits in the corresponding pixels. Note that
because e is computed based on the pixel value x (equation
(11)), any modification upon x will equally affect e.

A similar approach is used for smooth blocks. With equa-
tions (1) and (5), the difference values follows as:

d11 = eu11
− ev11 d21 = eu21

− ev21
d12 = eu12

− ev12 d22 = eu22
− ev22

(13)

The differences are then used in equation (8) to insert the hid-
den data.

After the X× set was used for data hiding, the embedding
process is repeated for theXo set. The modified values inX×
are used to predict the pixels in Xo and to evaluate the local
complexity of the blocks.

The data extraction starts with the recovery of the param-
eters from the reserved area. The extraction stages are per-
formed in reverse order, starting with the Xo set. The X× set
is processed after the Xo pixels are restored. It should also
be mentioned that the reserved area together with the first/last
pixel columns and rows are not considered for data hiding.
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Fig. 3. PSNR/Embedded bits results for the pairwise PVO scheme of [13], the pairwise IPVO scheme of [14], the quadtree-
based PVO of [15] and the proposed PEO approach.

Table 1. PSNR comparison ([dB]) between pairwise IPVO [14] and the proposed approach on the Kodak set.
10,000 bits 20,000 bits 35,000 bits 10,000 bits 20,000 bits 35,000 bits

Test Pairwise Proposed Pairwise Proposed Pairwise Proposed Test Pairwise Proposed Pairwise Proposed Pairwise Proposed
image IPVO scheme IPVO scheme IPVO scheme image IPVO scheme IPVO scheme IPVO scheme

Kodim01 64.07 63.44 59.42 58.13 53.72 53 Kodim13 58.19 59.87 52.23 53.84 - -
Kodim02 64.3 64.31 60.76 60.79 57.73 57.76 Kodim14 62.49 62.48 58.26 58.3 54.29 54.39
Kodim03 65.38 65.72 62.43 62.49 59.66 59.56 Kodim15 65.02 66.0 61.86 62.62 58.9 59.39
Kodim04 63.91 64.29 60.42 60.87 57.12 57.61 Kodim16 65.08 65.36 61.92 61.78 58.65 58.53
Kodim05 63.03 63.24 58.77 59.49 54.49 55.4 Kodim17 64.26 64.45 60.8 60.83 57.27 57.64
Kodim06 66.22 66.1 62.64 61.81 58.84 58.24 Kodim18 61.8 61.85 57.8 58.02 53.86 54.36
Kodim07 64.64 65.45 62.13 62.04 59.31 59.16 Kodim19 63.38 64.33 60.13 60.75 56.94 57.18
Kodim08 60.54 60.71 55.89 56.05 - - Kodim20 62.46 62.46 59.0 58.99 55.59 55.59
Kodim09 63.44 63.88 60.45 60.49 57.69 57.31 Kodim21 63.75 64.19 60.81 60.58 57.52 57.14
Kodim10 63.34 63.85 60.3 60.24 57.22 57.17 Kodim22 63.4 63.64 59.6 59.89 56.04 56.39
Kodim11 65.73 65.15 61.82 61.41 58.52 57.27 Kodim23 64.44 65.22 61.45 61.94 58.82 59.01
Kodim12 64.64 64.99 61.55 61.47 58.35 58.42 Kodim24 62.57 67.46 58.8 63.22 54.7 58.96

Average 63.71 64.1 60.11 60.25 57.05 57.67

4. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the proposed
prediction-error-ordering reversible data hiding scheme. The
results are presented for six classic test images and for the
graylevel version of the Kodak set. These test images are
shown in Fig. 2.

The performance of the proposed PEO approach is first
compared with the results reported in [13], [14] and [15]. The
corresponding plots are shown in Fig. 3. Based on these
results, PEO outperforms [13] and [14] in terms of PSNR.
While the quadtree-based PVO of [15] can generate better
PSNRs at lower capacities, its results are erratic. Overall,
PEO offers stable results that are superior for higher embed-
ding capacities.

The PEO approach is also evaluated on the Kodak set and
the results are shown in Table 1. The gain in PSNR of PEO
over the pairwise IPVO scheme of [14] increases with the em-
bedding capacity, reaching an average improvement in PSNR
of 0.62 dB for an embedding capacity of 35,000 bits.

5. CONCLUSIONS

An original prediction-error-ordering based reversible data
hiding scheme was proposed, derived from pixel-value-
ordering. Besides the block based embedding, the proposed
scheme also splits the image pixels into two sets. Each set is
embedded separately, using the other set for prediction and
local complexity evaluation. The proposed approach appears
to outperform other state-of-the-art PVO based schemes.
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