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ABSTRACT

Recently pixel pairing and pixel sorting/selection have been used in
prediction-error expansion based reversible data hiding schemes to
generate low entropy prediction-error histograms (PEH) necessary
for achieving high fidelity. Such schemes generally use the four-
neighbor average rhombus predictor as it allows pixel sorting and
flexible pixel pairing. In this paper, we propose the maximally sepa-
rated averages (MSA) predictor that uses the four-neighborhood con-
text. It can replace the rhombus predictor in pixel pairing and sorting
based schemes for lowering PEH entropy further to achieve higher
performance. At each pixel location, we choose the two maximally
separated average values and decide either on using one of them as
the predicted value or on avoiding prediction at the pixel location.
This is based on the observation that the prediction-error sequence
entropy decreases with the increase in the separation between the
two average values. Experimental results demonstrate that the state-
of-the-art schemes achieve considerable performance improvement
by using the proposed MSA predictor.

Index Terms— Reversible data hiding, prediction-error expan-
sion, maximally separated averages prediction

1. INTRODUCTION

Content fidelity is an important concern in information security and
has led to the development of numerous solutions for the issues of
copyright protection, covert communication, and authentication [1]–
[6]. The state-of-the-art approach for preventing unintended use of
a digital medium is to hide or embed information into it for integrity
protection and authentication. The use of conventional data hiding
approaches for this purpose leads to permanent distortion of the digi-
tal medium. This is undesirable in the case of highly content sensitive
applications such as military and medical image processing [4], [5]
where permanent distortion of the digital medium is unacceptable.
To meet the security needs of such applications, reversible data hid-
ing (RDH) [7] techniques can be used which allow exact recovery of
the original digital medium after extraction of the hidden data.

An RDH technique has two objectives which must be simulta-
neously realized. Firstly, the embedded data must be imperceptible
to the user. Secondly, the modifications due to data embedding must
be reversible so that the original medium can be losslessly recov-
ered. Therefore, given a cover medium and a payload (secret data),
the goal of an RDH technique is to minimize the embedding dis-
tortion due to the reversible modifications. The various techniques
developed so far for RDH in images can be organized into three cate-
gories: (1) compression based methods [8]–[10], (2) histogrammod-
ification based methods including histogram shifting (HS) [11]–[13],
difference expansion (DE) [14], [15] and prediction-error expansion
(PEE) [16]–[27], and (3) integer transform based methods [28]–[30].

The PEE technique, first proposed in [16], is one of the most ex-
tensively explored technique among the aforementioned techniques.
Most PEE techniques consist of two steps. In the first step, a se-
quence of prediction-errors (PE) is derived by predicting the pixels
in the cover image using the neighboring pixels and computing the
PEs. In the second step, the payload bits are reversibly embedded
into the PE sequence by modifying its histogram, commonly referred
to as the prediction-error histogram (PEH). The PEH shape plays a
significant role in the performance (minimization of embedding dis-
tortion) of PEE [20], [22]. Due to the spatial correlation among the
image pixels, the PEH is centrally distributed around the histogram
bin containing the zero PEs. Usually, the PEs in the first few most
populated PEH bins are used for embedding data. The PEs in the
other PEH bins are not used for data embedding but are modified to
make the embedding process reversible which also contribute to in-
crease in embedding distortion [20]. Therefore, the performance of
PEE depends upon the increasing the concentration of the PEs in a
few histogram bins rather than having the PEs distributed in a large
number of histogram bins. In other words, for achieving better per-
formance using PEE, a PE sequence with low entropy, i.e., a sharply
distributed PEH (also referred to as a low entropy PEH) is desirable.

Several approaches have been devised for achieving low entropy
PEHs. The prediction accuracy based approaches [17]–[19] focus
on devising high accuracy prediction strategies for obtaining low en-
tropy PEHs. The pixel sorting or pixel selection based techniques
[20]–[25], and [27], achieve low entropy PEHs by excluding the
rough pixels, which are more likely to generate PEs with high mag-
nitude, from the aforementioned two steps of PEE. The pixel pairing
based techniques [24], [25], and [27] pair up pixels to form low en-
tropy two dimensional (2D) PEHs. The underlying assumption is
that if correlated pixels are paired, the two PEs in each pixel pair
are likely to be similar leading to a 2D PEH with lower entropy as
compared to the corresponding 1D PEH.

The recent pixel pairing and pixel sorting based scheme [27]
exhibits better performance than the other aforementioned schemes
[17]–[25]. This can be attributed to the efficient adaptive pixel pair-
ing strategy and the adaptive 2D PEHmodification used in [27]. The
recent high performance scheme [27] andmost of the other pixel sort-
ing and pixel pairing based schemes [20], [21], [24], and [25] use
the four-neighbor average (rhombus) predictor, introduced in [20],
as it allows pixel sorting and flexible pixel pairing. The local least
square (LLS) predictor, proposed in [18], has better prediction ac-
curacy than the rhombus predictor. However, the performance of
the RDH scheme in [18] is not as good as [27] as the embedding
framework used in [18] is very basic. While using the LLS predic-
tor, the PE computed at a pixel location is required to be modified
before the PE at the next pixel location can be calculated. Therefore,
the LLS predictor cannot be easily incorporated into schemes that
employ pixel sorting and pixel paring such as [24], [25], and [27].
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Themulti-predictor sorting and selectionmechanism (MPSSM), pro-
posed in [19], allows multiple predictors to be combined for increas-
ing prediction accuracy. In MPSSM, a pixel location is either not
predicted at all or the output of one of the predictors is chosen as
the predicted value. However, the prediction contexts of the predic-
tors combined using MPSSM in [19] are incompatible with the four-
neighbor (rhombus) prediction context (see Fig. 1(a)) commonly
used in pixel sorting and pixel pairing based schemes. As a result,
these predictors combined using MPSSM cannot be used directly in
such schemes. Therefore, an efficient low entropy PEH generating
predictor, that can be substituted for the rhombus predictor in the
pixel sorting and pixel pairing schemes including the high perfor-
mance scheme of [27], is desirable. This would allow such schemes
to exploit the benefits of both low entropy prediction, and pixel sort-
ing and pixel pairing to achieve improved performance.

In this paper, we propose a novel maximally separated averages
(MSA) predictor which generates PE sequences with considerably
lower entropy as compared to the rhombus predictor. The proposed
predictor uses the four-neighbor prediction context and can be readily
incorporated into any pixel sorting and pixel pairing based scheme
(that uses rhombus predictor) for exploiting the benefits of both low
entropy prediction, and pixel sorting and pixel pairing. Using the
four-neighbor pixels, eleven (4C2 +

4 C3 +
4 C4) different groupings

can be formed and eleven different averages can be obtained by com-
puting the means of these eleven pixel groupings. For predicting a
pixel location, the proposed predictor chooses the two averages that
have the maximum separation between them and then uses a simpli-
fied adaptation of the multi-predictor sorting and selection mecha-
nism (MPSSM) [19] to either select one of the two averages as the
predicted value or avoid predicting at that pixel location. We refer to
the avoided pixel locations as unpredictable pixel locations (UPL).
We also present an analysis which shows that the PE sequence en-
tropy in the proposed predictor has an inverse relation with the num-
ber of UPLs and the number of UPLs has a direct relation with the
separation between the two averages chosen. This justifies the use of
the maximally separated averages for generating low entropy PE se-
quences. To validate its effectiveness, the proposed predictor is sub-
stituted for the rhombus predictor on three state-of-the-art schemes
including [20], [24], and the recent high performance scheme of [27].
Experimental results demonstrate that the state-of-the-art schemes
achieve considerable performance gain by using the proposed pre-
dictor in place of the rhombus predictor.

The contribution of this paper is the maximally separated av-
erages predictor for generating low entropy PE sequences which is
based on the following novelties.

(1) The concept of using two out of the possible eleven different
averages from the four-neighbor pixels to either predict a pixel
location or avoid predicting at a pixel location (UPL).

(2) A novel analysis which shows that the PE sequence entropy
has an inverse relation with the number of UPLs and the num-
ber of UPLs has a direct relation with the separation between
the two averages used.

(3) Leveraging the maximally separated averages of the four-
neighbor pixels for achieving low PE sequence entropy.

The rest of the paper is organized as follows. The proposed pre-
dictor is discussed in details in Section 2. The experimental results
are presented and discussed in Section 3. Finally, conclusions are
drawn in Section 4.

2. MAXIMALLY SEPARATED AVERAGES PREDICTION

2.1. The proposed predictor

As mentioned earlier, the proposed maximally separated averages
(MSA) predictor is designed to use the four-neighbor prediction con-
text so that it can be incorporated into any pixel sorting and pixel
pairing based scheme employing the rhombus predictor. Let x be
the to-be-predicted pixel value and let vn, vs, vw, and ve be its four
neighbor pixels as shown in Fig. 1(a). Using the four neighbor pix-
els, eleven (4C2 +

4 C3 +
4 C4) different groupings can be formed and

eleven different averages can be obtained by computing the means of
these eleven pixel groupings. Let a grouping containing k pixels be
referred to as a 4Ck grouping and its average be referred to as a 4Ck
average. The 4C2 averages at a pixel location can be derived using
Eq. (1) as shown below.

vns = ⌊(vn + vs)/2⌋ vwe = ⌊(vw + ve)/2⌋
vne = ⌊(vn + ve)/2⌋ vsw = ⌊(vs + vw)/2⌋ (1)
vnw = ⌊(vn + vw)/2⌋ vse = ⌊(vs + ve)/2⌋.

It can be seen in Eq. (1) that the number of common pixels between
any two 4C2 groupings is either zero or one. It can also be shown
that the number of common pixels between a 4Ck1 grouping where
k1 ∈ {2,3,4} and another 4Ck2 grouping where k2 ∈ {3,4} is at least
one. Hence, at any pixel location, two of the six 4C2 averages will be
the most separated (maximally separated) among the eleven different
averages and can be derived using Eq. (2).

vL = min(vns,vwe,vne,vsw,vnw,vse)

vH = max(vns,vwe,vne,vsw,vnw,vse).
(2)

The proposed predictor considers the maximally separated av-
erages vL and vH as the outputs of two distinct predictors and uses
Eq. (3) to either select one of the two averages as the predicted value
x̂ or avoid predicting at that pixel location. Eq. (3) is a simplified
adaptation of the multi-predictor sorting and selection mechanism
(MPSSM)[19].

x̂ =


vH x ≥ vH ,

vL x < vL,

Do not predict otherwise.
(3)

The pixel locations where prediction is avoided, referred to as the
unpredictable pixel locations (UPL), are not used in the subsequent
steps of PEE. The preference of the maximally separated averages in
the proposed predictor over the other nine averages is for increasing
the number of UPLs to achieve low PE sequence entropy which is
elaborated in the next section. The steps for predicting a pixel loca-
tion using the proposed MSA predictor are as follows:

• Step 1. Compute the six 4C2 averages using Eq. (1).
• Step 2. Determine the maximally separated averages vL and

vH using Eq. (2).
• Step 3. Determine the predicted value x̂ using the to-be-
predicted pixel value x using Eq. (3).

2.2. An analysis of PE sequence entropy reduction

In this section, we present an analysis which shows that 1) the PE
sequence entropy in the MSA predictor is less than that in the rhom-
bus predictor 2) the number of UPLs has an inverse relation with the
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(a) (b) (c) (d)

Fig. 1. (a) Four-neighbor (rhombus) prediction context, (b) unnormalized PEHs of rhombus and the proposed MSA predictor, (c) percentage
reduction of PEs in the MSA predictor, and (d) normalized PEHs of rhombus and the MSA predictor

PE sequence entropy and 3) the separation between the two averages
used in Eq. (3) has a direct relation with the number of UPLs and
this justifies the use of the maximally separated averages.

Let hR(e) and hM(e) be the PEHs of the rhombus predictor and
the MSA predictor, respectively, derived from the image Lena. The
plots of hR(e) and hM(e) are illustrated in Fig. 1(b). Due to avoid-
ance of prediction at the UPLs, the occurrence frequencies of the PEs
are observed to be relatively less in case of the MSA predictor, i.e.,
hM(e) < hR(e). Let us consider α(e) = 100(hR(e)− hM(e))/hR(e)
which is the percentage reduction in occurrence frequency of PEs in
the MSA predictor with respect to the rhombus predictor. It can be
observed from Fig. 1(b) that as the PE magnitude |e| increases from
zero, hR(e) decreases and this decrement is significant as compared
to the corresponding change in hR(e)− hM(e). Therefore, α(e) is
minimum at e = 0 and barring a few local inconsistencies, α(e) in-
creases with increase in the PE magnitude |e| as shown in Fig. 1(c).
Let αtotal be the percentage reduction in the total number of PEs in
the MSA predictor with respect to rhombus predictor. It is obvious
that α(0) < αtotal < max

e
α(e). Let pR(e) and pM(e) be the nor-

malized PEHs, i.e., the PE probability distributions, derived from
the image Lena using the rhombus predictor and the MSA predictor,
respectively, as illustrated in Fig. 1(d). For a PE, if α(e) < αtotal
(α(e) > αtotal), then pM(e) > pR(e) (pM(e) < pR(e)). This results
in the pM(e) shape shown in Fig. 1(d) which indicates that the PE
sequence entropy in the MSA predictor would be less than that in
the rhombus predictor. Such empirical observations can be made in
other images as well.

It can be seen in Eq. (3) that UPLs are pixel locations where
vL ≤ x < vH . This implies that the likelihood of a pixel location
being an UPL is dependent on the separation |vL − vH | at that loca-
tion. Therefore, the number of UPLs generated over the entire cover
image has a direct relation with the separation between the average
values used in Eq. (3).

The rhombus predictor can be considered as the case where the
4C4 average is used in place of both vL and vH in Eq. (3). LetUR and
UM be the sets of UPLs generated in the cover image in case of the
rhombus andMSApredictors, respectively. According to the relation
between the separation between the average values and the number
of UPLs,UR = ϕ andUR ⊆UM . Based on the above analysis of Fig.
2, the use of MSA predictor in place of rhombus predictor introduces
an additional set of UPLs UM −UR which leads to relatively lower
entropy in the MSA predictor. Now, let us consider the case where
two arbitrary averages va and vb other than the maximally separated
averages are used in Eq. (3). The separation |va − vb| would be less
than maximum separation |vL − vH | and va and vb would lie within

the interval [vL,vH ]. Therefore, if the corresponding set of UPLs is
Uab then UR ⊆Uab and Uab ⊆UM . So, based on the above analysis
of Fig. 2, the use of the maximally separated averages in Eq. (3),
rather than any two other arbitrary averages va and vb, introduces
an additional set of UPLs UM −Uab which leads to relatively lower
entropy in theMSA predictor. This justifies our use of the maximally
separated averages in Eq. (3) for achieving low PE sequence entropy.

3. EXPERIMENTAL RESULTS

The proposed MSA predictor can be incorporated into any RDH
scheme that uses the four-neighbor prediction context to derive
low entropy PE sequences and hence, achieve better performance.
In order to demonstrate its effectiveness, we chose to incorporate
the MSA predictor into the recent high performance state-of-the
art scheme [27] and two other state-of-the-art schemes [20], [24]
that employ the rhombus predictor. The peak signal-to-noise ratio
(PSNR), widely used in image RDH, is used as the evaluation metric
for embedding distortion [7]. We have used the standard 512 x 512
test images used in [28] for our experiments. The schemes of [20],
[24], and the adaptive mapping using generic search (AMG) scheme
of [27] were implemented inMATLAB. Using each scheme, two sets
of PSNR-payload performance results were generated. The first set
consists of PSNR-payload performances of the schemes [20], [24],
and [27] while employing the rhombus predictor and are denoted
by ‘Sachnev-Rhom’, ‘Pairwise-PEE-Rhom’, and ‘Hybrid-AMG-
Rhom’, respectively. The second set consists of PSNR-payload
performances of the schemes [20], [24], and [27] while employing
the proposed MSA predictor and are denoted by ‘Sachnev-MSA’,
‘Pairwise-PEE-MSA’, and ‘Hybrid-AMG-MSA’, respectively.

The performance results are illustrated in Fig. 2 which exhibit
that by substituting the rhombus predictor with the proposed MSA
predictor, better performance, i.e., low embedding distortion can be
achieved. This is because the PE sequence entropy in the MSA pre-
dictor is lower than that in the rhombus predictor. Due to avoidance
of prediction at the UPLs, the embedding capacity, i.e., the maxi-
mum embeddable payload size of theMSA predictor is not as high as
that of the rhombus predictor. However, in the embeddable payload
range of the MSA predictor, the average PSNR gain over rhombus
predictor in the schemes of [20], [24], and [27] are 1.19, 1.00, and
0.79 dB, respectively. The PSNR gains achieved by using the MSA
predictor in the schemes [20], [24], and [27] for payloads of sizes 5
and 10 kbits are given in Table 1 and Table 2, respectively. For pay-
loads of size 5 kbits, the average PSNR gains in [20], [24], and [27]
are 1.11, 1.08, and 0.84 dB, respectively. For payloads of size 10
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Fig. 2. PSNR-payload performance comparison between use of rhombus and MSA (proposed) predictors in the schemes [20], [24], [27].

Table 1. PSNR (in dB) comparison between the use of the rhombus
predictor and the proposed MSA predictor in the schemes of [20],
[24], and [27] for payloads of size 5 kbits

Images Rhombus Predictor MSA Predictor
[20] [24] [27] [20] [24] [27]

Lena 61.20 62.48 62.82 62.56 63.45 63.79
Baboon 57.40 58.60 59.35 58.87 59.94 60.46
Airplane 64.42 65.45 66.79 65.24 66.90 67.10
Barbara 61.23 62.22 63.03 62.56 63.54 64.04
Lake 60.28 62.36 62.62 60.89 63.00 63.28
Boat 59.38 61.22 61.46 60.43 62.02 62.43

Average 60.65 62.06 62.68 61.76 63.14 63.52

Table 2. PSNR (in dB) comparison between the use of the rhombus
predictor and the proposed MSA predictor in the schemes of [20],
[24], and [27] for payloads of size 10 kbits

Images Rhombus Predictor MSA Predictor
[20] [24] [27] [20] [24] [27]

Lena 58.20 59.24 59.73 59.41 60.26 60.73
Baboon 54.13 55.09 55.84 55.40 56.11 56.66
Airplane 60.38 62.25 63.30 61.82 63.59 63.88
Barbara 58.16 59.07 59.84 59.59 60.52 61.11
Lake 56.67 58.28 58.82 57.48 58.46 58.87
Boat 56.14 57.26 57.60 57.30 58.08 58.51

Average 57.28 58.53 59.19 58.50 59.50 59.96

kbits, the average PSNR gains in [20], [24], and [27] are 1.22, 0.97,
and 0.77 dB, respectively.

Moreover, a comparison of PE sequence entropy for rhombus,
LLS [18], and MSA predictors are shown in Table 3. It can be seen

Table 3. Comparison of entropy of prediction-error sequences

Predictor Images
Lena Babo. Airp. Barb. Lake Boat

Rhombus 4.108 5.967 3.864 5.111 4.963 4.811
LLS 3.939 5.696 3.722 4.040 4.869 4.432
MSA 3.415 5.313 2.612 4.337 4.314 4.094

that the proposed MSA predictor results in lower entropy as com-
pared to the rhombus predictor which is consistent with the PSNR
gains achieved in the schemes of [20], [24], and [27]. The MSA pre-
dictor is also found to be comparable in terms of entropy to the LLS
predictor, which cannot be used with pixel pairing and sorting based
schemes. Thus, any PEE scheme employing the rhombus predictor
can improve its performance by using the proposed MSA predictor.

4. CONCLUSION

In this paper, we propose a novel four-neighborhood based maxi-
mally separated averages (MSA) predictor for generating low en-
tropy PE sequences, required for high fidelity RDH. The MSA
predictor is designed to replace the rhombus predictor in the re-
cent high performance pixel pairing and sorting based schemes for
further improving their performance. At each pixel location, our
predictor computes the two most separated average values using the
four-neighbor pixels and either selects one of the two averages as
the predicted value or considers the pixel location unpredictable.
The most separated averages are used to increase the number of
unpredictable pixel locations, which, based on our analysis, results
in low PE sequence entropy. Experimental results demonstrate that
our predictor outperforms the rhombus predictor in terms of PE
sequence entropy and the state-of-the-art schemes achieve consider-
able performance gain by using our predictor.
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