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ABSTRACT

In this paper, we develop a statistical framework for image
steganography in which the cover and stego messages are
modeled as multivariate Gaussian random variables. By min-
imizing the detection error of an optimal detector within the
generalized adopted statistical model, we propose a novel
Gaussian embedding method. Furthermore, we extend the
formulation to cost-based steganography, resulting in a uni-
versal embedding scheme that works with embedding costs
as well as variance estimators. Experimental results show that
the proposed approach avoids embedding in smooth regions
and significantly improves the security of the state-of-the-art
methods, such as HILL, MiPOD, and S-UNIWARD.

Index Terms— Steganography, Optimal detector, Hy-
pothesis testing, Gaussian embedding

1. INTRODUCTION

Steganography is the art of covert communication through a
cover medium without raising any suspicion from steganal-
ysis [1]. In this paper, we focus on the most studied cover
medium, digital images. Non-adaptive image steganography
approaches [2, 3] are easily detectable as they neglect pixel
to pixel dependencies [4]. Therefore, to achieve a better se-
curity, steganography should be content adaptive, in which
message embedding is done while minimizing the caused dis-
tortion formulated to a source coding problem [5–9].

There are two types of content adaptive image steganog-
raphy. We call the first type cost based methods where cost
of embedding in each pixel is computed then embedding is
done while minimizing the distortion based on calculated
costs. In Spatial UNIversal WAvelet Relative Distortion
(S-UNIWARD) [10], embedding costs are calculated using
directional filter banks. In HIgh-pass, Low-pass, and Low-
pass (HILL), they are calculated using a high-pass filter to
find noisy parts, and subsequently smoothing the costs using
two low-pass filters [11]. Although, these methods achieve
superior results, there is no theoretical relation between sta-
tistical security measures and their derived costs [12].

This has been addressed in the second type of image
steganography approaches which we call statistical model

based approaches. In [13], by modeling the cover as inde-
pendent Gaussian random variables and assuming a ternary
message, embedding is done while minimizing the Kullback-
Leibler divergence between the cover and stego messages.
The result was further improved in [14], using the same
framework but with a generalized Gaussian statistical model
for the cover utilizing a better variance estimator and em-
bedding quinary message. Building upon the result of these
two works, Minimizing the Power of Optimal Detector (Mi-
POD) [15] was proposed reaching state-of-the-art perfor-
mance. In MiPOD, the cover was modeled as independent
Gaussian random variables and assuming a ternary message,
embedding was done while maximizing the error of a hypoth-
esis testing detector that utilizes a likelihood ratio test.

In all the-state-of-the-art statistical model based steganog-
raphy approaches, the formulation is derived for a fixed em-
bedding scenario such as ternary (embedding ±1) or quinary
(embedding ±1,±2). In other words, for every embedding
scenario, the problem requires to be reformulated. The gener-
alization of the problem formulation is a missing piece which
is addressed in our work for the first time. Furthermore, the
former methods embed a significant portion of the payload in
smooth regions with high cost or near zero variance. In this
sense, security can be further improved by embedding less in
these regions.

In this work, we propose a novel Gaussian embedding
technique utilizing a similar cover model to MiPOD. How-
ever, for the first time, we model the hidden message as a
continuous random variable with Gaussian distribution. This
allows us to do q-ary embedding for any q by only chang-
ing the quantization levels without requiring problem refor-
mulation for each q. The second contribution is that the ex-
plained formulation is also extended to distortion minimiza-
tion framework. Thus, the proposed method works with any
embedding cost calculator as well as any variance estimator.

The statistical model for the cover and stego images are
shown in Sec. 2. A hypothesis testing steganalysis framework
is developed in Sec. 3. A novel Gaussian embedding method
is proposed in Sec. 4. Then, the method is extended to cost
based steganography framework in Sec. 4.1. The results and
conclusions are provided in Sec. 5 and 6 respectively.
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2. STATISTICAL MODELS

Cover images are denoted by c = [c1, . . . , cn] ∈ P =
{0, . . . , 255}n, where P is the set of all vector representation
of 8-bit gray-scale images of size n1 · n2 = n. Each ci is
modeled as a predictable part plus a residual, xi, that has
a Gaussian distribution, N (0, σ2

i ), where σ2
i includes both

the pixel’s and estimation error’s variance. By assuming σi is
much greater than 1, the quantization step size, the probability
distribution of the ith cover pixel residual is

pxi(k) ∝ 1

σi
√

2π
exp

(
−k2

2σ2
i

)
(1)

Refer to [15] for more information regarding this cover
model. We also model all the stego message elements, mi,
as Gaussian random variables with variance βi. Thus, the
probability distribution of mi is given by

pmi
(k) =

1

βi
√

2π
exp

(
−k2

2β2
i

)
. (2)

The stego image is the summation of the cover image with
the stego message elements, i.e. s = c + m. Thus, the ith

stego pixel residual is yi = xi + mi. Based on (1) and (2),
the probability distribution of the ith stego pixel residual is:

pyi(k) ∝ 1√
2π(σ2

i + β2
i )

exp

(
−k2

2(σ2
i + β2

i )

)
, (3)

which is also derived with the assumption of unbounded
quantization levels and

√
σ2
i + β2

i � ∆, for simplicity. The
next section is devoted to explain how steganalyzer distin-
guishes the cover image from the stego image.

3. STEGANALYSIS

We assume the steganalyzer utilizes a likelihood ratio test to
do a binary hypothesis testing betweenH0 andH1, represent-
ing the cases of receiving a cover or a stego image respec-
tively. Suppose that r = [r1, . . . , rn] are statistically indepen-
dent residuals of the received image’s pixels. Thus, the likeli-
hood ratio for the whole image can be written as

∏n
i=1 Λi, in

which Λi is the likelihood ratio for the ith pixel. In the worst
case scenario of an omniscience steganalyzer who knows all
the message and cover variances (βi and σi), based on (1) and
(3), the likelihood ratio for the ith pixel, Λi, is given by

Λi =
pyi(ri)

pxi(ri)
=

√
σ2
i

σ2
i + β2

i

exp

(
r2i
2

β2
i

σ2
i (σ2

i + β2
i )

)
. (4)

As a result the natural logarithm of the likelihood ratio is

ln Λi = ln

(√
σ2
i

σ2
i + β2

i

)
+

β2
i

2σ2
i (σ2

i + β2
i )
r2i , (5)

which is a constant plus a Gamma distributed random vari-
able, Γ(ki, θi), since ri has a normal distribution. ki and θi
are the shape and scale parameters respectively. For deriving

these parameters for both hypotheses, the following approxi-
mations, based on β2

i /σ
2
i < 1 and Taylor series of ln(1 + x),

are utilized. If x = β2
i /σ

2
i ,

ln

(
σ2
i

σ2
i +β2

i

)
= − ln

(
1 +

β2
i

σ2
i

)
≈ −β

2
i

σ2
i

+
1

2

(
β2
i

σ2
i

)2

. (6)

If x = −β2
i /(σ

2
i + β2

i ), the approximation is

ln

(
σ2
i

σ2
i + β2

i

)
≈ − β2

i

σ2
i + β2

i

− 1

2

(
β2
i

σ2
i + β2

i

)2

. (7)

In addition, further simplification, based on assuming β2
i /σ

2
i <

1 and Taylor series of x/(1+x), can be done as shown below.

β2
i

σ2
i + β2

i

≈ β2
i

σ2
i

(8)

Given H0, the Gamma distribution parameters are k = 1/2
and θi = β2

i /(σ
2
i + β2

i ). The resulted mean and variance of
the natural logarithm of the likelihood ratio are:

E
H0

ri|σi,βi
[ln Λi] = ln

(√
σ2
i

σ2
i+β

2
i

)
+ kθi ≈ −14

(
β2
i

σ2
i

)2
Var

H0

ri|σi,βi
[ln Λi] = kθ2i ≈ 1

2

(
β2
i

σ2
i

)2
(9)

where the approximations are based on (7) and (8). Given
H1, the Gamma distribution parameters are k = 1/2 and θi =
β2
i /σ

2
i . The resulted mean and variance are:

E
H1

ri|σi,βi
[ln Λi] = ln

(√
σ2
i

σ2
i+β

2
i

)
+ kθi ≈ 1

4

(
β2
i

σ2
i

)2
Var

H0

ri|σi,βi
[ln Λi] = kθ2i = 1

2

(
β2
i

σ2
i

)2
(10)

where approximation is based on (6). Summation of Gamma
distributed variables with equal shape and bounded scale pa-
rameters converges to normal distribution with mean and vari-
ance equal to summation of means and variances respectively
[16]. Thus, based on (9) and (10), for large enough n, prob-
ability distribution of

∑n
i=1 ln(Λi), can be approximated as:{

N (−14 α,
1
2α) ifH0 is true,

N (+1
4 α,

1
2α) ifH1 is true,

(11)

where α is as follows:
α =

n∑
i=1

(
β2
i

σ2
i

)
2

. (12)

This result is also consistent with the shift hypothesis stating
that embedding affects only the mean of the detector’s output
[17]. The detector’s decision is given by

n∑
i=1

ln(Λi)
H1

≷
H0

γ, (13)

where γ is the decision threshold. To find γ, we employ min-
imax criterion, one of the most common optimality criteria
for hypothesis testing, which does not require the hypothesis
prior probabilities and assumes the least favorable ones. The
least favorable priors are the solution of the equalizer rule,
and they are 1/2 for this problem assuming symmetric costs.
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Therefore, the decision boundary, γ, is zero which has the
minimum expected risk over all possible prior distributions.
The expected value of the detection error, summation of false
alarm and missed detection, for such a detector is given by

PE = φ(
−α4√
α
2

) = φ(−
√
α

8
), (14)

where φ is the cumulative distribution of standard normal dis-
tribution. Eq. (14) is a monotonically decreasing function of
α. Therefore, the steganographer can minimize α instead of
maximizing the detector’s error, PE.

4. GAUSSIAN EMBEDDING METHOD

In this section, a novel image steganography method is intro-
duced based on maximizing the detection error of the optimal
detector shown in previous section. The problem of optimal
embedding for a fixed payload can be written as:

arg max
(β1,...,βn)

PE ≡ arg min
(β1,...,βn)

α

n∑
i=1

H(pmi) = np
(15)

where p is the relative payload per pixel in nats. Shannon en-
tropy of the hidden message elements,mi, a Gaussian random
variable with variance β2

i , is given by

H(pmi) =
1

2
ln(2πeβ2

i ) (16)

The solution of (15) using (12) and Lagrangian multipliers is
the solution of the following equation

∂

∂βi

 n∑
j=1

(
β2
j

σ2
j

)2

+λ
(
np− 1

2

n∑
j=1

ln(2πeβ2
j )
)= 0, (17)

for j = 1, . . . , n, where λ is the Lagrangian multiplier that is
calculated using the payload constraint in (15), and thus will
be shown as a function of the payload, p. Solution of (15) is

β∗i =
4
√
λ(p)√

2
σi for i = 1, . . . , n (18)

This solution guarantees more embedding in noisy and tex-
tured regions with high residual variances, σi, and less em-
bedding in smooth regions with low residual variances.

By assuming a (2q+1)-ary embedding scenario, the mes-
sage is a Gaussian random variable with variance βi truncated
and quantized toQ = {−q, . . . ,−1, 0, 1, . . . ,+q}. The prob-
ability distribution of mi, is given by

pmi
(k) =

φ(k+0.5
βi

)− φ(k−0.5βi
)

φ( q+0.5
βi

)− φ(−q−0.5βi
)
∀k ∈ {-q, . . . ,+q} (19)

which is probability of changing the ith pixel by k. They
are computed by solving the following system of equations
with n + 1 equations and variables, β1, . . . , βn and λ, using
Newton-Raphson method.


β∗i =

4
√
λ(p)√
2
σi for i = 1, . . . , n

−
n∑
i=1

q∑
k=−q

(pmi
(k) ln pmi

(k)) = np
(20)

For implementing the proposed embedding technique by
syndrome-trellis codes [18], we need to find the embedding
costs for all the pixels. These costs are calculated by solving
the following system of equations, having Gibbs form [19].

pmi
(k) = e−ρi(k)/

q∑
d=−q

e−ρi(d), (21)

for ∀i ∈ {1, . . . , n}, ∀k ∈ {−q, . . . , q}, where ρi(k), indi-
cates the amount of distortion added to image by changing
the ith pixel by k. There are n× q equations and variables by
assuming symmetric costs, and ρi(0) = 0, ∀i ∈ {1, . . . , n}.

4.1. Extension to Cost-based Methods

In cost-based methods, steganographer tries to minimize ex-
pected value of a distortion function, D(s, c) (s and c are stego
and cover images respectively). We define distortion as the
expected value of absolute difference of pixel intensities be-
tween cover and stego same as the prior arts. Thus, steganog-
raphy problem for a payload limited sender can be written as:

arg min
(β1,...,βn)

E[D(s, c)] = arg min
(β1,...,βn)

n∑
i=1

Emi|βi
[ρi|si-ci|]

n∑
i=1

H(pmi
) = np

(22)
where ρi is cost of embedding ±1 in ith pixel calculated by
any of mentioned algorithms [10,11,20]. Assuming the same
Gaussian embedding scenario with mi ∼ N (0, β2

i ), the ex-
pected value of the defined distortion is

Emi|βi
[ρi|si − ci|] = Emi|βi

[ρi|mi|] = ρiβi

√
2

π
. (23)

Using Lagrangian multipliers approach, solution of (22) is

β∗j =
λ(p)

ρj

√
π

2
, (24)

where λ(p) is the Lagrangian multiplier calculated using the
payload constraint in (22). The rest of the embedding ap-
proach is similar to (20) and (21).

5. EXPERIMENTS AND DISCUSSIONS

We use BOSSbase 1.01 database including 10k gray-scale
512 × 512 pixels images [21]. To evaluate the performance
of each method, the average detection error, the average false
positive and negative rates, is reported. It is evaluated by an
ensemble classifier steganalyzer [22] with a 10-fold cross val-
idation, trained on SRM features [23]. 4096 and 4096 im-
ages are chosen randomly as training/validation set and test-
ing set respectively. Three state-of-the-art content-adaptive
image steganography methods, HILL [11], MiPOD [15], and
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Table 1. Detection error computed by steganalysis using SRM features in different payloads ranging from 0 to 1 bpp for HILL
algorithm and its Gaussian versions with different q’s in a (2q+1)-ary embedding scenario.

Payload 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1

HILL .500±.0048 .487±.0041 .462±.0045 .409±.0061 .357±.0044 .302±.0046 .252±.0043 .143±.0048 .070±.0052
q=1 .499±.0047 .487±.0040 .467±.0057 .419±.0059 .365±.0059 .310±.0050 .258±.0063 .150±.0064 .075±.0080
q=2 .499±.0062 .487±.0026 .467±.0047 .418±.0037 .367±.0058 .314±.0065 .265±.0059 .159±.0074 .089±.0063
q=3 .497±.0042 .487±.0035 .468±.0046 .421±.0047 .373±.0061 .323±.0065 .275±.0073 .171±.0070 .103±.0060
q=4 .500±.0024 .488±.0043 .469±.0048 .424±.0049 .375±.0038 .320±.0062 .274±.0055 .173±.0062 .107±.0063
q=5 .499±.0036 .489±.0031 .469±.0067 .421±.0040 .373±.0056 .322±.0069 .272±.0071 .175±.0056 .109±.0075

Table 2. Detection error computed by steganalysis using SRM features in different payloads ranging from 0 to 1 bpp .
Payload 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1

G-HILL .497±.0042 .487±.0035 .468±.0046 .421±.0047 .373±.0061 .323±.0065 .275±.0073 .171±.0070 .103±.0060
HILL .500±.0048 .487±.0041 .462±.0045 .409±.0061 .357±.0044 .302±.0046 .252±.0043 .143±.0048 .070±.0052

G-MiPOD .498±.0027 .482±.0037 .454±.0050 .404±.0047 .347±.0053 .292±.0050 .243±.0068 .153±.0072 .090±.0059
MiPOD .498±.0038 .468±.0044 .434±.0041 .373±.0046 .322±.0050 .269±.0049 .225±.0061 .128±.0057 .061±.0068

G-S-UNIWARD .499±.0047 .485±.0030 .457±.0030 .400±.0038 .338±.0069 .279±.0072 .229±.0072 .135±.0070 .077±.0048
S-UNIWARD .498±.0030 .479±.0036 .448±.0051 .375±.0048 .309±.0062 .251±.0049 .203±.0057 .105±.0057 .048±.0058

0.02 0.05 0.1 ρ 0.2

0

1

2

G-HILL

HILL

1 2 4 6 ρ 10

0

1

2

G-SUNIWARD

SUNIWARD

0 10 20 30 σ
2 45

0

1

2

G-MiPOD

MiPOD

Fig. 1. Bits embedded in pixels of “1.pgm” against their em-
bedding costs or variances for embedding 0.3 bpp for HILL,
S-UNIWARD, and MiPOD.

S-UNIWARD [10,24], are used for evaluations with their best
performing settings. In addition, in all the methods, we avoid
embedding in saturated pixels due to performance drop [25].

5.1. Determining Maximum Pixel Change (q)

To find the optimal q in (19), we have evaluated the perfor-
mance of HILL and its Gaussian versions derived in (24) for
q = 1, . . . , 5. Results are shown in Table 1. It is observed
that larger q results in higher security, but no significant im-
provement is seen for q > 3. In addition, the complexity of
the coding algorithm increases as q increases [18]. Therefore,
we choose q = 3 (septenary) for the rest of the experiments.

5.2. Comparison with Prior Arts

In Table 2, the security of three stat-of-the-art image steganog-
raphy methods, HILL [11], MiPOD [15], and S-UNIWARD

[10], is compared with their Gaussian versions with q = 3
shown with a prefix of G. In G-HILL and G-S-UNIWARD,
the message variances are calculated by (24) using the embed-
ding cost, ρ, computed by HILL and S-UNIWARD respec-
tively. In G-MiPOD, the message variances are calculated
by (18) using the variance estimator of MiPOD to compute
pixel residual variances. It is observed that utilizing the
Gaussian embedding scheme, security of all the algorithms
are significantly improved for every payload (0-1 bits per
pixel). We believe that the improvement is due to the fact that
the proposed Gaussian method embeds more bits in textured
areas (pixels with low embedding costs, ρ, or equivalently
high residual variances, σ2) and less in smooth areas (pixels
with high embedding costs or equivalently low residual vari-
ances). To verify this, in Fig. 1, we plotted the distribution
of the message for original and Gaussian versions of three
state-of-the-art methods in pixels of one of the images of
the BOSSbase 1.01 database (1.pgm) versus their embedding
costs computed by HILL and S-UNIWARD, and also the pix-
els residual variances computed by MiPOD. It shows more
bits are hidden in pixels with small ρ or high σ for all three
prior arts compared to their Gaussian version.

6. CONCLUSIONS

A statistical framework is developed for steganography prob-
lem. The cover and the stego messages are modeled by in-
dependent Gaussian random variables. Then, a novel Gaus-
sian embedding technique is proposed by minimizing the de-
tection error of an optimal hypothesis testing detector and it
works with pixel embedding costs as well as residual vari-
ances. We achieve better performance comparing to prior
arts against advanced steganalysis due to better concentra-
tion of the payload in textured regions and less embedding
in smooth regions. In future, we will extend this method to
batch steganography.
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