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ABSTRACT
The method reported here realizes an inaudible echo-hiding based
speech watermarking by using sparse subspace clustering (SSC).
Speech signal is first analyzed with SSC to obtain its sparse and low-
rank components. Watermarks are embedded as the echoes of the
sparse component for robust extraction. Self-compensated echoes
consisting of two independent echo kernels are designed to have sim-
ilar delay offsets but opposite amplitudes. A one-bit watermark is
embedded by separately performing the echo kernels on the sparse
and low-rank components. As a result, the sound distortion caused
by one echo signal can be quickly compensated by the other echo
signal, which enables better inaudibility. Since the embedded echoes
have the same sparsity as the sparse component, watermarks can be
extracted with a basic cepstrum analysis even if the echo kernels are
not directly performed on the original speech. The evaluation results
verify the feasibility and effectiveness of this method.

Index Terms— Echo-hiding, sparsity, sparse subspace cluster-
ing, speech watermarking

1. INTRODUCTION

Speech watermarking is the process of hiding imperceptible infor-
mation (watermarks) in the original speech [1, 2]. It is considered
to be a practical way to protect speech and has been studied for a
few decades [3]. An effective watermarking method should satisfy
several conflicting requirements, e.g., inaudibility, blindness, robust-
ness, and security. Since these requirements mutually restrict and
rely on each other, the design of a speech watermarking scheme is
usually treated as a problem of seeking an artful balance among them
[4].

In literature, audio watermarking has been sufficiently studied
compared with speech watermarking. In particular, because of the
similarities between audio and speech, many successful audio water-
marking techniques have been adapted to speech signals and found
effective for them, e.g., least significant bit-replacement (LSB) [5],
direct spread spectrum (DSS) modulation [6, 7], cochlear delay (CD)
[8], and phase modulation [9]. As a representative technique for au-
dio watermarking, echo-hiding [10, 11], has attracted considerable
attention for its remarkable inaudibility, robustness, etc. However,
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the echo-hiding method has been rarely used on speech. Many stud-
ies claim that echo-hiding is uniquely for audio [10, 12]. One reason
behind this claim is that the human auditory system (HAS) is more
sensitive to echoes of clean speech than to echoes of general au-
dio. This makes echo-hiding based watermarking a rather challeng-
ing task for speech signals. Moreover, it has been found that most
echo-hiding methods apply the echo kernel directly to the original
whole signal [10, 11, 12, 13]. One advantage is that the cepstrum
of the watermarked signal can thus be simplified into a sum of the
cepstrum of the original signal and the cepstrum of the echo kernel,
which facilitates watermark extraction [13, 14]. The mathematical
derivation for cepstrum analysis would be rather complicated if the
echo kernel were not performed in this way. Although [15] proposes
to apply the echo kernel to two subsignals of the original signal, it
still requires the values of two adjacent samples in two subsignals to
be amlost identical. Under this strict constraint, a general cepstrum
analysis can be used for watermark extraction [16].

Two main issues that we deal with here are (i) how to embed
the echo effectively for speech watermarking without degrading the
speech quality and (ii) how to extract the watermarks when the echo
kernels are not directly applied to the original whole speech. To
address these problems, we investigated a new echo-hiding mech-
anism, i.e., self-compensated echoes, by taking advantage of the
sparsity of the original speech. Unlike most methods that perform
the echo kernel directly on the original signal, the proposed kernels
are performed on only part of the speech, i.e., its sparse component,
which is obtained by sparse subspace clustering (SSC). One bene-
fit leading to better security is that the embedded echoes can hardly
be extracted without prior knowledge on how the sparse component
was extracted and what parameters were used. The self-compensated
echoes consisting of two echo kernels were designed to have oppo-
site amplitudes to maximally reduce the perceptual distortion. Ben-
efiting from SSC, the watermarks can be extracted with a basic cep-
strum analysis due to the sparsity of the embedded echoes, even the
echo kernels are not performed on the original speech, which can be
considered to be a new manner of echo-hiding.

2. PROPOSED METHOD

Human speech varies significantly over time, and its power concen-
trates on formants. Consequently, the spectrogram about speech has
a relatively sparse structure [17, 18] and a speech signal can be sep-
arated into at least two main components, i.e., a sparse component
and a low-rank component. The sparse component contains impor-
tant information of speech, so we embed watermarks as echoes of the
sparse component to strengthen it for robust watermark extraction.
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2.1. Sparse subspace clustering for speech separation

The problem of separating speech into its sparse component and low-
rank component can be solved with Robust Principal Component
Analysis (RPCA), as long as the data matrix with points as column
vectors has approximately low-rank [18, 19, 20]. However, this as-
sumption cannot always be satisfied in real situations, since the data
may lie in a number of lower-dimensional subspaces other than a
single subspace, e.g., as in the case of audio data [20]. Consider-
ing a future generalization of the proposed method to audio signals,
we chose to use SSC [21] to do the separation, which is capable of
separating the data samples to multiple lower-dimensional subspaces
according to their underlying attributes, using sparse representation
techniques [22].

The process of SSC for sparse and low-rank separation is for-
mulated as follows. Given a speech signal, we divide it into non-
overlapping frames. Each frame is expressed as x(n) ∈ Rn×1 of
n samples. Here, we require

√
n to be an integer and larger than σ

(e.g., σ=10). Each frame x(n) can be reshaped into a square ma-
trix XF ∈ RN×N , N =

√
n. Starting from the simplest case of

SSC, we suppose that the data points of one column, xi ∈ RN×1,
1 ≤ i ≤ N , of speech frame XF lie in K linear subspaces and
the dimension of each subspace is smaller than N . According to
the self-expressiveness property, xi in XF can be written as a linear
combination of the other points in XF , i.e.,

xi = XF ci, cii = 0, (1)

where ci = [ci1, ci2, · · · , ciN ]T , XF is called the self-expressive
dictionary, and the constraint cii = 0 avoids expressing a data point
as a linear combination of itself. For Eq. (1), there ideally exists an
efficient subspace-sparse representation, ĉi, whose nonzero entries
correspond to data points from the same subspace, as xi. To find
this ĉi, Eq. (1) is restricted by minimizing the objective function ci
under the l1-norm, i.e.,

min
ci
‖ci‖l1 s.t. xi = XF ci, cii = 0, (2)

This can be rewritten in matrix form for all data points,

min
C
‖C‖l1 s.t. XF = XFC, diag(C) = 0, (3)

where the i-th column of C = [c1, c2, · · · , cN ] ∈ RN×N corre-
sponds to the sparse representation of xi.

Since the speech signal contains both sparse and low-rank com-
ponents, its data does not lie in a union of low-dimensional sub-
spaces. Therefore, the basic form XF = XFC, diag(C) = 0 in
Eq. (3) should be generalized as,

XF = XFC + S, diag(C) = 0, (4)

where S corresponds to the matrix of sparse outlying entries. Ac-
cordingly, we have

min
C,S

‖C‖l1 + λs‖S‖l1 (5)

s.t. XF = XFC + S, diag(C) = 0,

where λs > 0 balances the two terms in the objective function and
l1-norm promotes sparsity in the columns of C and S. Equation (5)
can be solved using convex programming tools [21]. The optimal
solution Ĉ and Ŝ of Eq. (5) expresses the XF in the form of its
low-rank component LF ∈ RN×N and its sparse component SF ∈
RN×N , where LF = XF Ĉ is the component of XF expressed

with the union of multiple low-dimensional subspace signals and SF

(equals Ŝ), SF = XF − LF , respectively. Finally, LF and SF

are reshaped into low-rank signal l(n) ∈ Rn×1 and sparse signal
s(n) ∈ Rn×1, respectively. Note that when adapting the current
SSC model to audio signals, the multiple low-dimensional subspace
audio signals can be separately calculated by using XF ĉi, 1 ≤ i ≤
N , where ĉi is the i-th column of Ĉ ∈ RN×N .

2.2. Watermark embedding algorithm

Watermarks are embedded to emphasize the sparse component with
self-compensated echo kernels, which consists of two independent
echo kernels hp(n) and hq(n), as follows:

hp(n) = aδ(n−d∗) + aδ(n+d∗), (6)
hq(n) = −aδ(n−d∗−∆)− aδ(n+d∗+∆), (7)

where δ(·) denotes the Dirac delta function, a (0 < a < 1) is the
amplitude of the echoes, and d∗ = {d0, d1} is the delay of the echo
signal determined by the watermark bits.

Inaudibility is achieved by collaboration between hp(n) and
hq(n). Here, the first item of hp(n), i.e., aδ(n− d∗), produces
an echo with a positive amplitude a, while the first item of hq(n),
i.e., −aδ(n−d∗−∆), produces an echo with a negative amplitude
−a, where the offset ∆ (a small integer) in hq(n) determines the
delay time of the first echo in hq(n) relative to the first echo in
hp(n). Because of their opposite amplitudes and the short offset ∆
between them, the sound distortion introduced by the first echo is
quickly weakened by the second echo, which leads to better sound
quality. The second items in hp(n) and hq(n) are designed in the
same manner. Moreover, both hp(n) and hq(n) contain forward
and backward kernels themselves. It has been proven that such ker-
nels can increase the peak of cepstrum for more robust watermark
extraction [23].

It seems reasonable to perform the echo kernels hp(n) and
hq(n) on l(n) and s(n) separately. However, as the offset ∆ be-
tween hp(n) and hq(n) will cause the echoes of l(n) and s(n)
to be misaligned, the speech quality will be distorted. More im-
portantly, since l(n) and s(n) are different from each other, their
echoes cannot be compensated effectively even with the opposite
amplitude. Hence, the watermarked signal y(n) is obtained by only
emphasizing the sparse component, s(n), i.e.,

y(n) = x(n)+ξs(n)⊗ hp(n) + ξs(n)⊗ hq(n) (8)
= x(n)+ξ(s(n)⊗ (hp(n)+hq(n))),

where the operator ⊗ denotes convolution and ξ (0 < ξ < 1) con-
trols the energy of the echo.

To clearly explain the watermark extraction process in subsec-
tion 2.3, in fact, we implement Eq. (8) by performing hp(n) and
hq(n) on l(n) and s(n) separately, i.e.,

l̃(n) = l(n) + ξ(s(n)⊗ hp(n)), (9)
s̃(n) = s(n) + ξ(s(n)⊗ hq(n)). (10)

The watermarked signal y(n) is the sum of l̃(n) and s̃(n), which is
derived the same as Eq. (8),

y(n) = l̃(n)+s̃(n) (11)
= x(n)+ξ(s(n)⊗ (hp(n)+hq(n))).
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2.3. Watermark extraction algorithm

When the echo kernel, e.g., h(n), is directly performed on the orig-
inal signal x(n), i.e., y(n) = x(n) ⊗ h(n), the cesptrum of y(n)
simplifies to Cy(n) = Cx(n) +Ch(n), where C(·) = F−1(log(F(·))),
F(·) and F−1(·) stand for Fourier transform and inverse Fourier
transform, respectively. However, if the echo kernel is performed
on a non-linear transformed signal of x(n), e.g., y(n) = x(n) +
F (x(n)) ⊗ h(n), where F (·) stands for the non-linear transforma-
tion, Cy(n) = F−1(log(F(x(n)+F (x(n))⊗h(n)))) can no longer
be simplified into a sum of Cx(n) and Ch(n) [13]. Moreover, it is
difficult to ensure the convergence of the Taylor series in this case
[14, 16].

Obviously, the proposed method suffers from the above prob-
lem (see Eq. (8)) and the s(n) obtained by SSC is typically a non-
linear transformed signal of x(n). Nevertheless, since the embedded
echoes are generated by the sparse component s(n) in our method,
theoretically, they should have the same sparsity as s(n). As a result,
the embedded echoes will be completely assigned to the sparse com-
ponent if we use the same parameters λs in the embedding process
to analyze the watermarked signal. Accordingly, we have

l̆(n) ≈ l(n), (12)
s̆(n) ≈ s(n) + ξ(s(n)⊗ (hp(n) + hq(n))), (13)

where l̆(n) and s̆(n) are the extracted low-rank signal and sparse
signal, respectively. According to Eq. (13), watermark extraction is
only related to s̆(n). By re-writing s(n) in form of s(n)⊗ δ(n), Eq.
(13) can be formulated as

s̆(n) ≈ s(n)⊗ (δ(n) + ξ(hp(n) + hq(n)))︸ ︷︷ ︸
hs(n)

, (14)

where hs(n) stands for the kernel for s(n). Watermarks can be ex-
tracted with a basic cepstral analysis of Eq. (14), i.e.,

Cs̆(n) ≈ Cs(n) + Chs(n) (15)

= F−1(logS(w)) + F−1(logHs(w)).

More specifically, Hs(w) can be rewritten as

Hs(w) = 1 + 2aξ(coswd∗ − cosw(d∗ + ∆)) (16)

Using a trigonometric function coswd∗ − cosw(d∗ + ∆) =
2(sin(2wd∗ + w∆)/2 × sinw∆/2), when we adjust a and ξ to
make sure 4aξ < 1, Eq. (16) can be expanded in a Taylor series:

logHs(w) = 2aξ(coswd∗−cosw(d∗ + ∆))

− (2aξ)2

2
(coswd∗−cosw(d∗ + ∆))2 + · · · .

(17)

The cepstrum of hs(n) can be expressed as

Chs(n) = aξ[δ(n− d∗) + δ(n+ d∗)]

− aξ[δ(n− d∗ −∆) + δ(n+ d∗ + ∆)] + · · · .
(18)

The most dominant peaks appear at n = d∗ and n = d∗ + ∆ can be
used for watermark extraction.

It should be noted that SSC provides a way to cluster speech
data according to their underlying characteristics, and this facilitates
and simplifies echo extraction when echo kernels are not performed
on the original whole signal. Since the echoes generated from the
subspace signals have the same characteristics as them, they will be
well preserved within the subspace signals for extraction. Moreover,
the proposed method can potentially be further developed by sep-
arately applying suitable echo kernels to the low-rank component,
sparse component, and multi-subspace signals.
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Fig. 1. Speech quality for varying offsets ∆.
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Fig. 2. Performance of proposed method using positive and opposite
echo kernels (6 bps).

3. EVALUATIONS

We experimentally evaluated our method in terms of its inaudibil-
ity and robustness. Inaudibility was measured in terms of the log-
spectrum distortion (LSD) [24] and a perceptual evaluation of speech
quality (PESQ) [25]. An LSD of 1.0 dB was chosen as the crite-
rion, and a lower value indicates less distortion. The PESQ evaluated
the speech quality with Objective Difference Grades (ODGs), where
ODGs were graded from −0.5 (very annoying) to 4.5 (impercepti-
ble), corresponding to Mean Opinion Score (MOS) values of 1.0 to
5.0. The ODG of 3.0 (slightly annoying) was set as the criterion, and
a higher value indicates better quality. The bit detection rate (BDR),
which is defined as the ratio between the correctly extracted bits and
the embedded bits, was selected to evaluate robustness. A higher
BDR indicates stronger robustness.

The 12 speech signals in the ATR database (B set) (8.1-sec, 20
kHz, and 16 bits) were used as stimuli [26]. The performance of
the proposed method depends heavily on its parameters. According
to our preliminary experiments, the λs was set as 50 to attain the
best results. The a and ξ were set as 0.45 and 0.5, respectively, to
balance inaudibility and robustness while assuring the convergence
of the Taylor series. The delay d∗ in Eqs. (6) and (7) was set as
d0 = 31 for bit 0 and d1 = 60 for bit 1. The embedded watermark
was a random binary sequence. The embedding capacities were set
as 6, 10, 13, 18, 25, 40, 70, and 160 bps. All of the reported results
were calculated on the average of 12 speech signals.

1) Inaudibility affected by offset ∆: The proposed method takes
advantage of successive but opposite echoes for inaudibility. To
check how the offset ∆ of the successive echoes affects speech qual-
ity, we used a gradually increasing ∆ in hq(n) for embedding, i.e.,
∆ = {1, 2, 3, 4, 5, 10, 15, 20, 25}. Figure 1 plots the inaudibility re-
sults, where embedding capacity was fixed at 6 bps. The LSD results
remained almost unchanged as ∆ increased. In contrast, the PESQ
results got worse when ∆ increased. These results suggest that a

2634



6 10 13 25 40 70 160

50

60

70

80

90

100

Bit rate (Bps)

B
D

R
 (

%
)

 

 

BDR (Sparse)

BDR (Low−rank)

Fig. 3. Watermark extraction based on sparsity of embedded echoes.

4 8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

(a) 

Bit rate (bps)

L
S

D
 (

d
B

)

4 8 16 32 64 128 256
1

2

3

4 (b) 

Bit rate (bps)

P
E

S
Q

 (
O

D
G

)

 

 

LSB

DSS

CD
 

 

FE

RPCA&FM

Proposed

Fig. 4. Comparative results on inaudibility.

shorter offset enables two opposite echoes to be better compensated
and that using a small ∆ would yield satisfactory inaudibility.

2) Effectiveness of self-compensated echoes: We compared two
types of kernel to check the effectiveness of the self-compensated
echo kernels in preserving speech quality: one was the same as
hp(n) and hq(n) in Eqs. (6) and (7), and the other was hp(n) and
|hq(n)|, i.e., both hp(n) and |hq(n)| had positive amplitudes. In
both cases, we set a one-sample offset, ∆ = 1. The LSD and PESQ
results are plotted in Figs. 2(a) and 2(b). The self-compensated
echo kernels with opposite amplitudes provided better speech qual-
ity compared with positive amplitudes. This result verifies the ef-
fectiveness of the proposed echo kernels. In addition, according to
Eq. (18), the BDR results of the two cases should be the same. The
results in Fig. 2 (c) indeed show that the BDRs of the two cases were
similar to each other.

3) Watermark extraction based on sparsity of embedded
echoes: The simple watermark extraction of our method relies
on the assumption that the embedded echoes generated by the sparse
component have the same sparsity. To verify that this assumption
is valid, we separately extracted the watermarks from the sparse
component and the low-rank component. The BDR results in Fig. 3
shows that the watermarks were correctly extracted from the sparse
component. In contrast, the BDR of the low-rank component was
quite low. Even though the averaged BDR of the low-rank part
reached almost 70% at 6 bps, the deviation was quite high, sug-
gesting that the results were not stable on different speech signals.
Overall, these results verify our assumption.

4) Comparative evaluations: Finally, we compared our method
with other methods, i.e., LSB [5], DSS [6], CD [8], watermarking
based on formant enhancement (FE) [27], and watermarking based
on Robust PCA and formant manipulations (RPCA&FM) [28]. The
embedding capacities of the LSB, DSS, CD, and FE methods were
4, 8, 16, 32, 64, 128, and 256 bps, while the embedding capacities
of RPCA&FM were 4, 8, 16, 32, 64, 128, 200, and 400 bps, in
accordance with their original implementations.

The comparative results on inaudibility are plotted in Fig. 4. The
LSB method, which is known for its inaudibility, performed the best.
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Fig. 5. Comparative results on robustness.

CD had satisfactory inaudibility when the embedding capacity was
lower than 16 bps. DSS did not satisfy the criteria for either LSD
or PESQ. The FE and RPCA&FM methods satisfied the criteria for
both LSD and PESQ, and their LSD results were better than those of
the proposed method. Our method was better than CD, DSS, FE, and
RPCA&FM for PESQ, and its results were close to those of the LSB
method for PESQ. Overall, our method had satisfactory inaudibility
(LSD ≤ 1.0 dB and PESQ ≥ 3.0 ODG).

Robustness was evaluated against several speech processings
and two typical speech codecs. These included re-sampling (24
kHz and 12 kHz), re-quantization (24 bits and 8 bits), speech anal-
ysis/synthesis using gammatone filter-bank (GTFB) and short-time
Fourier transform (STFT), and speech codecs G.711 and G.726.
The BDR results are plotted in Fig. 5. The DSS method performed
the best. The LSB method was only robust against a few kinds
of processing. The CD method was robust against all processings
except for re-quantization with 8 bits, GTFB, and G.726. Our
method, the FE method, and the RPCA&FM method were basically
robust against all processings except for re-quantization with 8 bits.
Overall, our method had satisfactory inaudibility and robustness.
However, its robustness at high capacities needs to be improved.
This will be a topic of our future work.

4. CONCLUSIONS

We described a watermarking method for speech signals based on
echo-hiding and sparse subspace clustering. In this method, water-
marks are embedded as echoes of the sparse component for robust
extraction. Two independent echo kernels with similar delay times
but opposite amplitudes are used to reduce the sound distortion. The
evaluation results suggested that echo-hiding with satisfactory in-
audibility can be performed on speech. Furthermore, the results
showed that it is possible to extract the watermarks with a general
cepstrum analysis by taking advantage of the attributes of subsignals
when the echo kernels are not applied to the original signal. This
finding shows promise for developing new ways of echo-hiding.
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